Timeline of science and engineering in the Islamic world
This timeline of science and engineering in the Islamic world covers the time period from the eighth century AD to the introduction of European science to the Islamic world in the nineteenth century. All year dates are given according to the Gregorian calendar except where noted.
Contents
 Eighth century 1
 Ninth century 2
 Tenth century 3
 Eleventh century 4
 Twelfth century 5
 Thirteenth century 6
 Fourteenth century 7
 Fifteenth century 8
 Sixteenth century 9
 Seventeenth century 10
 See also 11
 References 12
 External links 13
 References 14
Eighth century
 770–840 – Mathematics: Khwarizmi Developed the "calculus of resolution and juxtaposition" (hisab aljabr w'almuqabala), more briefly referred to as aljabr, or algebra.
Ninth century
 803 – Chemistry, glass: AbuMoussa Jabir ibn Hayyan (Latinized name, Geber,). First chemist known to produce sulfuric acid, as well as many other chemicals and instruments. Wrote on adding color to glass by adding small quantities of metallic oxides to the glass, such as manganese dioxide. This was a new advance in glass industry unknown in antiquity. His works include The Elaboration of the Grand Elixir; The Chest of Wisdom in which he writes on nitric acid; Kitab alistitmam (translated to Latin later as Summa Perfectionis); and others.
 c. 810 Bayt alHikma (House of Wisdom) set up in Baghdad. There Greek and Indian mathematical and astronomy works are translated into Arabic.
 836–901 Mathematics: Thabit Ibn Qurra (Latinized, Thebit.) Studied at Baghdad's House of Wisdom under the Banu Musa brothers. Discovered a theorem which enables pairs of amicable numbers to be found. Later, alBaghdadi (b. 980) a developed variant of the theorem.
 Midninth century Chemistry: AlKindi writes on the distillation of wine as that of rose water and gives 107 recipes for perfumes, in his book Kitab Kimia al`otoor wa altas`eedat (book of the chemistry of perfumes and distillations.)}
 864–930 Chemistry, medicine: AlRazi AlRazi wrote on Naft (naphta or petroleum) and its distillates in his book "Kitab sirr alasrar" (book of the secret of secrets.) When choosing a site to build Baghdad's hospital, he hung pieces of fresh meat in different parts of the city. The location where the meat took the longest to rot was the one he chose for building the hospital. Advocated that patients not be told their real condition so that fear or despair do not affect the healing process. Wrote on alkali, caustic soda, soap and glycerine. Gave descriptions of equipment processes and methods in his book Kitab alAsrar (book of secrets) in 925.
 888 – ? 'Abbas Ibn Firnas. Planetarium, artificial crystals. According to one account written seven centuries after his death, Ibn Firnas was injured during an elevated winged trial flight.
Tenth century
 By this century, three systems of counting are used in the Arab world. Fingerreckoning arithmetic, with numerals written entirely in words, used by the business community; the sexagesimal system, a remnant originating with the Babylonians, with numerals denoted by letters of the arabic alphabet and used by Arab mathematicians in astronomical work; and the Indian numeral system, which was used with various sets of symbols. Its arithmetic at first required the use of a dust board (a sort of handheld blackboard) because "the methods required moving the numbers around in the calculation and rubbing some out as the calculation proceeded."
 920 Mathematics: alUqlidisi.. Modified arithmetic methods for the Indian numeral system to make it possible for pen and paper use. Hitherto, doing calculations with the Indian numerals necessitated the use of a dust board as noted earlier.
 940 Mathematics: Born Abu'lWafa alBuzjani. Wrote several treatises using the fingercounting system of arithmetic, and was also an expert on the Indian numerals system. About the Indian system he wrote: "[it] did not find application in business circles and among the population of the Eastern Caliphate for a long time." ^{[1]} Using the Indian numeral system, abu'l Wafa was able to extract roots.
 957 Chemistry: Abul Hasan Ali AlMasudi, wrote on the reaction of alkali water with zaj (vitriol) water giving sulfuric acid.
 980 Mathematics: alBaghdadi Studied a slight variant of Thabit ibn Qurra's theorem on amicable numbers.^{[1]} AlBaghdadi also wrote about and compared the three systems of counting and arithmetic used in the region during this period.
Eleventh century
 1044 or 1048–1123 Mathematics: Omar AlKhayyam. Persian mathematician and poet. "Gave a complete classification of cubic equations with geometric solutions found by means of intersecting conic sections.".^{[1]} Extracted roots using the decimal system (the Indian numeral system).
Twelfth century
 1100–1166 Cartography: Muhammad alIdrissi, aka Idris alSaqalli aka alsharif alidrissi of Andalusia and Sicily. Known for having drawn some of the most advanced ancient world maps.
 1130 Mathematics:alSamawal. An important member of alKaraji's school of algebra. Gave this definition of algebra: "[it is concerned] with operating on unknowns using all the arithmetical tools, in the same way as the arithmetician operates on the known." ^{[1]}
 1135 Mathematics: Sharafeddin Tusi. Follows alKhayyam's application of algebra of geometry, rather than follow the general development that came through alKaraji's school of algebra. Wrote a treatise on cubic equations which ^{[2]} describes thus: "[the treatise] represents an essential contribution to another algebra which aimed to study curves by means of equations, thus inaugurating the beginning of algebraic geometry." (quoted in ^{[1]} ).
Thirteenth century
 Medicine; Scientific method: Galen and Avicenna (ibn Sina). At least an illustration of his manuscript is still extant. William Harvey explained the circulatory system without reference to ibn alNafis in 1628. Ibn alNafis extolled the study of comparative anatomy in his "Explaining the dissection of [Avicenna's] AlQanoon" which includes a prefaces, and citations of sources. Emphasized the rigours of verification by measurement, observation and experiment. Subjected conventional wisdom of his time to a critical review and verified it with experiment and observation, discarding errors.
 Chemistry: AlJawbari describes the preparation of rose water in the work "Book of Selected Disclosure of Secrets" (Kitab kashf alAsrar).
 Chemistry; materials; glassmaking: Arabic manuscript on the manufacture of false gemstones and diamonds. Also describes spirits of alum, spirits of saltpetre and spirits of salts (hydrochloric acid).
 Chemistry: An Arabic manuscript written in Syriac script gives description of various chemical materials and their properties such as sulfuric acid, salammoniac, saltpetre and zaj (vitriol).
 1260 Mathematics: alFarisi. Gave a new proof of Thabit ibn Qurra's theorem, introducing important new ideas concerning factorization and combinatorial methods. He also gave the pair of amicable numbers 17296, 18416 which have also been joint attributed to Fermat as well as Thabit ibn Qurra.^{[3]}
Fourteenth century
 1380 Mathematics: Horner."
 1393–1449 Astronomy: Ulugh Beg commissions an observatory at Samarqand in presentday Uzbekistan.
Fifteenth century
 Mathematics: Ibn alBanna and alQalasadi used symbols for mathematics "and, although we do not know exactly when their use began, we know that symbols were used at least a century before this." ^{[1]}
 Astronomy and mathematics: Ibn Masoud (Ghayyathuddin Jamshid ibn Mohamed ibn mas`oud, d. 1424 or 1436.) Wrote on the decimal system. Computed and observed the solar eclipses of 809AH, 810AH and 811AH, after being invited by Ulugh Beg, based in Samarqand to pursue his study of mathematics, astronomy and physics. His works include "The Key of arithmetics"; "Discoveries in mathematics"; "The Decimal point"; "the benefits of the zero". The contents of the Benefits of the Zero are an introduction followed by five essays: On whole number arithmetic; On fractional arithmetic; on astrology; on areas; on finding the unknowns [unknown variables]. He also wrote a "Thesis on the sine and the chord"; "thesis on the circumference" in which he found the ratio of the circumference to the radius of a circle to sixteen decimal places; "The garden of gardens" or "promenade of the gardens" describing an instrument he devised and used at the Samarqand observatory to compile an ephemeris, and for computing solar and lunar eclipses; The ephemeris "Zayj AlKhaqani" which also includes mathematical tables and corrections of the ephemeresis by AlTusi; "Thesis on finding the first degree sine".
Sixteenth century
 Aviation: In 1648 John Wilkins cites Busbecq, the Austrian ambassador to Istanbul 15541562, as recording that "a Turk in Istanbul" attempted to fly.^{[4]}
Seventeenth century
 Mathematics: The Arabic mathematician Mohammed Baqir Yazdi discovered the pair of amicable numbers 9,363,584 and 9,437,056 for which he is jointly credited with Descartes.^{[3]}
See also
 Islamic Golden Age
 Islamic science
 Ibn Sina Academy of Medieval Medicine and Sciences
 Timeline of historic inventions
References
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} ^{g} Arabic Mathematics at the University of StAndrews, Scotland
 ^ R Rashed (1994). The development of Arabic mathematics : between arithmetic and algebra. London.
 ^ ^{a} ^{b} http://amicable.homepage.dk/apstat.htm#discoverer
 ^ Wilkins, John. Mathematicall Magick or the Wonders that may be performed by Mechanicall Geometry. In two books. Concerning Mechanicall Powers and Motions, London 1648, 204; also see a reprint of the same book in The Mathematical and Philosophical Works of John Wilkins to which is prefixed the author's life and an account of his works, 1802, vol. II, 201
External links
 Qatar Digital Library  an online portal providing access to previously undigitised British Library archive materials relating to Gulf history and Arabic science
 "How Greek Science Passed to the Arabs" by De Lacy O'Leary
 StAndrew's chronology of mathematics
References
 Donald Routledge Hill and Ahmad Y Hassan (1986), Islamic technology–an illustrated history, ISBN 0521263336.
 Rashed, Roshdi; Morelon, Régis (1996).


Categories
 Use dmy dates from April 2012
 Articles needing cleanup from September 2011
 All articles needing cleanup
 Cleanup tagged articles without a reason field from September 2011
 WorldHeritage pages needing cleanup from September 2011
 All articles with unsourced statements
 Articles with unsourced statements from April 2014
 WorldHeritage articles needing page number citations from October 2011
 History of Islamic science
 Timelines of Muslim history
 Science timelines
 Technology timelines
 History of science and discoveries by region