Cell (biology)

Cell (biology)

Cell
Onion (Allium) cells in different phases of the cell cycle
A eukaryotic cell (left) and a prokaryotic cell (right)
Anatomical terminology
Structure of an animal cell

The cell (from replicate independently, and are often called the "building blocks of life". The study of cells is called cell biology.

Cells consist of unicellular (consisting of a single cell; including bacteria) or multicellular (including plants and animals). While the number of cells in plants and animals varies from species to species, humans contain more than 10 trillion (1013) cells.[3] Most plant and animal cells are visible only under the microscope, with dimensions between 1 and 100 micrometres.[4]

The cell was discovered by hereditary information necessary for regulating cell functions and for transmitting information to the next generation of cells.[7] Cells emerged on Earth at least 3.5 billion years ago.[8][9][10]

Contents

  • Anatomy 1
    • Prokaryotic cells 1.1
    • Eukaryotic cells 1.2
    • Parikaryotic cells 1.3
  • Subcellular components 2
    • Membrane 2.1
    • Cytoskeleton 2.2
    • Genetic material 2.3
    • Organelles 2.4
      • Eukaryotic 2.4.1
      • Eukaryotic and prokaryotic 2.4.2
  • Structures outside the cell membrane 3
    • Cell wall 3.1
    • Prokaryotic 3.2
      • Capsule 3.2.1
      • Flagella 3.2.2
      • Fimbria 3.2.3
  • Cellular processes 4
    • Growth and metabolism 4.1
    • Replication 4.2
    • Protein synthesis 4.3
    • Movement or motility 4.4
  • Multicellularity 5
    • Cell specialization 5.1
    • Origin of multicellularity 5.2
  • Origins 6
    • Origin of the first cell 6.1
    • Origin of eukaryotic cells 6.2
  • History of research 7
  • See also 8
  • References 9
  • Bibliography 10
  • External links 11
    • Textbooks 11.1

Anatomy

Comparison of features of prokaryotic and eukaryotic cells
Prokaryotes Eukaryotes
Typical organisms bacteria, archaea protists, fungi, plants, animals
Typical size ~ 1–5 µm[11] ~ 10–100 µm[11]
Type of nucleus nucleoid region; no true nucleus true nucleus with double membrane
DNA circular (usually) linear molecules (chromosomes) with histone proteins
RNA/protein synthesis coupled in the cytoplasm RNA synthesis in the nucleus
protein synthesis in the cytoplasm
Ribosomes 50S and 30S 60S and 40S
Cytoplasmic structure very few structures highly structured by endomembranes and a cytoskeleton
Cell movement flagella made of flagellin flagella and cilia containing microtubules; lamellipodia and filopodia containing actin
Mitochondria none one to several thousand (though some eukaryotic cells lack mitochondria altogether)
Chloroplasts none in algae and plants
Organization usually single cells single cells, colonies, higher multicellular organisms with specialized cells
Cell division binary fission (simple division) mitosis (fission or budding)
meiosis
Chromosomes single chromosome more than one chromosome
Membranes cell membrane Cell membrane and membrane-bound organelles

Cells are of two types, multicellular.

Prokaryotic cells

Diagram of a typical prokaryotic cell

Textbooks

  • MBInfo - Descriptions on Cellular Functions and Processes
  • MBInfo - Cellular Organization
  • Inside the Cell - a science education booklet by National Institutes of Health, in PDF and ePub.
  • Cells Alive!
  • Cell Biology in "The Biology Project" of University of Arizona.
  • Centre of the Cell online
  • The Image & Video Library of The American Society for Cell Biology, a collection of peer-reviewed still images, video clips and digital books that illustrate the structure, function and biology of the cell.
  • HighMag Blog, still images of cells from recent research articles.
  • New Microscope Produces Dazzling 3D Movies of Live Cells, March 4, 2011 - Howard Hughes Medical Institute.
  • Cell lineageC. elegansWormWeb.org: Interactive Visualization of the - Visualize the entire cell lineage tree of the nematode C. elegans

External links

Bibliography

  1. ^ a b
  2. ^ Cell Movements and the Shaping of the Vertebrate Body in Chapter 21 of Molecular Biology of the Cell fourth edition, edited by Bruce Alberts (2002) published by Garland Science.
    The Alberts text discusses how the "cellular building blocks" move to shape developing embryos. It is also common to describe small molecules such as amino acids as "molecular building blocks".
  3. ^ Alberts, p. 2.
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^ a b Schopf, JW, Kudryavtsev, AB, Czaja, AD, and Tripathi, AB. (2007). Evidence of Archean life: Stromatolites and microfossils. Precambrian Research 158:141-155.
  9. ^ a b Schopf, JW (2006). Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci 29;361(1470):869-85.
  10. ^ a b
  11. ^ a b
  12. ^ Microbiology : Principles and Explorations By Jacquelyn G. Black
  13. ^ European Bioinformatics Institute, Karyn's Genomes: Borrelia burgdorferi, part of 2can on the EBI-EMBL database. Retrieved 5 August 2012
  14. ^
  15. ^ PH Raven , Evert RF, Eichhorm SE (1999) Biology of Plants, 6th edition. WH Freeman, New York
  16. ^
  17. ^
  18. ^
  19. ^
  20. ^
  21. ^
  22. ^ Alberts B, Johnson A, Lewis J. et al. Molecular Biology of the Cell, 4e. Garland Science. 2002
  23. ^
  24. ^
  25. ^ a b c Grosberg RK, Strathmann RR. The evolution of multicellularity: A minor major transition? Annu Rev Ecol Evol Syst. 2007;38:621–654.
  26. ^ http://public.wsu.edu/~lange-m/Documnets/Teaching2011/Popper2011.pdf
  27. ^
  28. ^
  29. ^
  30. ^
  31. ^ "... I could exceedingly plainly perceive it to be all perforated and porous, much like a Honey-comb, but that the pores of it were not regular [..] these pores, or cells, [..] were indeed the first microscopical pores I ever saw, and perhaps, that were ever seen, for I had not met with any Writer or Person, that had made any mention of them before this. . ." – Hooke describing his observations on a thin slice of cork. Robert Hooke

References

See also

History of research

There is still considerable debate about whether organelles like the hydrogenosome predated the origin of mitochondria, or vice versa: see the hydrogen hypothesis for the origin of eukaryotic cells.

The eukaryotic cell seems to have evolved from a mitochondria and the chloroplasts are descended from ancient symbiotic oxygen-breathing proteobacteria and cyanobacteria, respectively, which were endosymbiosed by an ancestral archaean prokaryote.

Origin of eukaryotic cells

Cells emerged at least 3.5 billion years ago.[8][9][10] The current belief is that these cells were heterotrophs. The early cell membranes were probably more simple and permeable than modern ones, with only a single fatty acid chain per lipid. Lipids are known to spontaneously form bilayered vesicles in water, and could have preceded RNA, but the first cell membranes could also have been produced by catalytic RNA, or even have required structural proteins before they could form.[30]

There are several theories about the origin of small molecules that led to life on the [29]

Stromatolites are left behind by cyanobacteria, also called blue-green algae. They are the oldest known fossils of life on Earth. This one-billion-year-old fossil is from Glacier National Park in the United States.

Origin of the first cell

The origin of cells has to do with the origin of life, which began the history of life on Earth.

Origins

The evolution of multicellularity from unicellular ancestors has been replicated in the laboratory, in evolution experiments using predation as the selective pressure.[25]

The first evidence of multicellularity is from Grypania spiralis and the fossils of the black shales of the Palaeoproterozoic Francevillian Group Fossil B Formation in Gabon.[28]

Multicellularity has evolved independently at least 25 times,[25] including in some prokaryotes, like symbiotic relationships.

Origin of multicellularity

Most distinct cell types arise from a single totipotent cell, called a zygote, that differentiates into hundreds of different cell types during the course of development. Differentiation of cells is driven by different environmental cues (such as cell–cell interaction) and intrinsic differences (such as those caused by the uneven distribution of molecules during division).

In complex multicellular organisms, cells specialize into different cell types that are adapted to particular functions. In mammals, major cell types include skin cells, muscle cells, neurons, blood cells, fibroblasts, stem cells, and others. Cell types differ both in appearance and function, yet are genetically identical. Cells are able to be of the same genotype but of different cell type due to the differential expression of the genes they contain.

[24] Multicellular organisms are

Staining of a Caenorhabditis elegans which highlights the nuclei of its cells.

Cell specialization

Multicellularity

[23][22] The process is divided into three steps – protrusion of the leading edge of the cell, adhesion of the leading edge and de-adhesion at the cell body and rear, and cytoskeletal contraction to pull the cell forward. Each step is driven by physical forces generated by unique segments of the cytoskeleton.[21] In multicellular organisms, cells can move during processes such as wound healing, the immune response and

Unicellular organisms can move in order to find food or escape predators. Common mechanisms of motion include flagella and cilia.

Movement or motility

Transcription is the process where genetic information in DNA is used to produce a complementary RNA strand. This RNA strand is then processed to give messenger RNA (mRNA), which is free to migrate through the cell. mRNA molecules bind to protein-RNA complexes called ribosomes located in the cytosol, where they are translated into polypeptide sequences. The ribosome mediates the formation of a polypeptide sequence based on the mRNA sequence. The mRNA sequence directly relates to the polypeptide sequence by binding to transfer RNA (tRNA) adapter molecules in binding pockets within the ribosome. The new polypeptide then folds into a functional three-dimensional protein molecule.

Cells are capable of synthesizing new proteins, which are essential for the modulation and maintenance of cellular activities. This process involves the formation of new protein molecules from amino acid building blocks based on information encoded in DNA/RNA. Protein synthesis generally consists of two major steps: transcription and translation.

An overview of protein synthesis.
Within the nucleus of the cell (light blue), genes (DNA, dark blue) are transcribed into RNA. This RNA is then subject to post-transcriptional modification and control, resulting in a mature mRNA (red) that is then transported out of the nucleus and into the cytoplasm (peach), where it undergoes translation into a protein. mRNA is translated by ribosomes (purple) that match the three-base codons of the mRNA to the three-base anti-codons of the appropriate tRNA. Newly synthesized proteins (black) are often further modified, such as by binding to an effector molecule (orange), to become fully active.

Protein synthesis

In meiosis, the DNA is replicated only once, while the cell divides twice. DNA replication only occurs before meiosis I. DNA replication does not occur when the cells divide the second time, in meiosis II.[20] Replication, like all cellular activities, requires specialized proteins for carrying out the job.

DNA replication, or the process of duplicating a cell's genome, always happens when a cell divides through mitosis or binary fission. This occurs during the S phase of the cell cycle.

Cell division involves a single cell (called a mother cell) dividing into two daughter cells. This leads to growth in Prokaryotic cells divide by binary fission, while eukaryotic cells usually undergo a process of nuclear division, called mitosis, followed by division of the cell, called cytokinesis. A diploid cell may also undergo meiosis to produce haploid cells, usually four. Haploid cells serve as gametes in multicellular organisms, fusing to form new diploid cells.

Bacteria divide by binary fission, while eukaryotes divide by mitosis or meiosis.

Replication

Between successive cell divisions, cells grow through the functioning of cellular metabolism. Cell metabolism is the process by which individual cells process nutrient molecules. Metabolism has two distinct divisions: monosaccharides such as glucose. Once inside the cell, glucose is broken down to make adenosine triphosphate (ATP), a molecule that possesses readily available energy, through two different pathways.

Growth and metabolism

Cellular processes

A fimbria also known as a pilus is a short, thin, hair-like filament found on the surface of bacteria. Fimbriae, or pili are formed of a protein called pilin (antigenic) and are responsible for attachment of bacteria to specific receptors of human cell (cell adhesion). There are special types of specific pili involved in bacterial conjugation.

Fimbria

Flagella are organelles for cellular mobility. The bacterial flagellum stretches from cytoplasm through the cell membrane(s) and extrudes through the cell wall. They are long and thick thread-like appendages, protein in nature. A different type of flagellum is found in archaea and a different type is found in eukaryotes.

Flagella

A gelatinous capsule is present in some bacteria outside the cell membrane and cell wall. The capsule may be polysaccharide as in pneumococci, meningococci or polypeptide as Bacillus anthracis or hyaluronic acid as in streptococci. Capsules are not marked by normal staining protocols and can be detected by India ink or methyl blue; which allows for higher contrast between the cells for observation.[19]:87

Capsule

Prokaryotic

Many types of prokaryotic and eukaryotic cells have a cell wall. The cell wall acts to protect the cell mechanically and chemically from its environment, and is an additional layer of protection to the cell membrane. Different types of cell have cell walls made up of different materials; plant cell walls are primarily made up of cellulose, fungi cell walls are made up of chitin and bacteria cell walls are made up of peptidoglycan.

Cell wall

Many cells also have structures which exist wholly or partially outside the cell membrane. These structures are notable because they are not protected from the external environment by the semipermeable cell membrane. In order to assemble these structures, their components must be carried across the cell membrane by export processes.

Structures outside the cell membrane

  • Ribosomes: The ribosome is a large complex of RNA and protein molecules. They each consist of two subunits, and act as an assembly line where RNA from the nucleus is used to synthesise proteins from amino acids. Ribosomes can be found either floating freely or bound to a membrane (the rough endoplasmatic reticulum in eukaryotes, or the cell membrane in prokaryotes).[18]

Eukaryotic and prokaryotic

  • Endoplasmic reticulum: The endoplasmic reticulum (ER) is a transport network for molecules targeted for certain modifications and specific destinations, as compared to molecules that float freely in the cytoplasm. The ER has two forms: the rough ER, which has ribosomes on its surface that secrete proteins into the ER, and the smooth ER, which lacks ribosomes. The smooth ER plays a role in calcium sequestration and release.
  • Golgi apparatus: The primary function of the Golgi apparatus is to process and package the macromolecules such as proteins and lipids that are synthesized by the cell.
  • Lysosomes and Peroxisomes: viruses or bacteria. Peroxisomes have enzymes that rid the cell of toxic peroxides. The cell could not house these destructive enzymes if they were not contained in a membrane-bound system.
  • Centrosome: the cytoskeleton organiser: The centrosome produces the microtubules of a cell – a key component of the cytoskeleton. It directs the transport through the ER and the Golgi apparatus. Centrosomes are composed of two centrioles, which separate during cell division and help in the formation of the mitotic spindle. A single centrosome is present in the animal cells. They are also found in some fungi and algae cells.
  • Vacuoles: Vacuoles sequester waste products and in plant cells store water. They are often described as liquid filled space and are surrounded by a membrane. Some cells, most notably Amoeba, have contractile vacuoles, which can pump water out of the cell if there is too much water. The vacuoles of plant cells and fungal cells are usually larger than those of animal cells.
Diagram of an endomembrane system
  • Cell nucleus: A cell's information center, the eukaryotic cell. It houses the cell's chromosomes, and is the place where almost all DNA replication and RNA synthesis (transcription) occur. The nucleus is spherical and separated from the cytoplasm by a double membrane called the nuclear envelope. The nuclear envelope isolates and protects a cell's DNA from various molecules that could accidentally damage its structure or interfere with its processing. During processing, DNA is transcribed, or copied into a special RNA, called messenger RNA (mRNA). This mRNA is then transported out of the nucleus, where it is translated into a specific protein molecule. The nucleolus is a specialized region within the nucleus where ribosome subunits are assembled. In prokaryotes, DNA processing takes place in the cytoplasm.
  • Mitochondria and Chloroplasts: generate energy for the cell. Respiration occurs in the cell mitochondria, which generate the cell's energy by oxidative phosphorylation, using oxygen to release energy stored in cellular nutrients (typically pertaining to glucose) to generate ATP. Mitochondria multiply by binary fission, like prokaryotes. Chloroplasts can only be found in plants and algae, and they capture the sun's energy to make carbohydrates through photosynthesis.
Human cancer cells with nuclei (specifically the DNA) stained blue. The central and rightmost cell are in interphase, so the entire nuclei are labeled. The cell on the left is going through mitosis and its DNA has condensed.

Eukaryotic

There are several types of organelles in a cell. Some (such as the nucleus and golgi apparatus) are typically solitary, while others (such as mitochondria, chloroplasts, peroxisomes and lysosomes) can be numerous (hundreds to thousands). The cytosol is the gelatinous fluid that fills the cell and surrounds the organelles.

Organelles are parts of the cell which are adapted and/or specialized for carrying out one or more vital functions, analogous to the organs of the human body (such as the heart, lung, and kidney, with each organ performing a different function). Both eukaryotic and prokaryotic cells have organelles, but prokaryotic organelles are generally simpler and are not membrane-bound.

Organelles

Foreign genetic material (most commonly DNA) can also be artificially introduced into the cell by a process called transfection. This can be transient, if the DNA is not inserted into the cell's genome, or stable, if it is. Certain viruses also insert their genetic material into the genome.

A human cell has genetic material contained in the cell nucleus (the nuclear genome) and in the mitochondria (the mitochondrial genome). In humans the nuclear genome is divided into 46 linear DNA molecules called chromosomes, including 22 homologous chromosome pairs and a pair of sex chromosomes. The mitochondrial genome is a circular DNA molecule distinct from the nuclear DNA. Although the mitochondrial DNA is very small compared to nuclear chromosomes, it codes for 13 proteins involved in mitochondrial energy production and specific tRNAs.

Prokaryotic genetic material is organized in a simple circular DNA molecule (the bacterial mitochondria and chloroplasts (see endosymbiotic theory).

Two different kinds of genetic material exist: encoded in its DNA sequence. RNA is used for information transport (e.g., mRNA) and enzymatic functions (e.g., ribosomal RNA). Transfer RNA (tRNA) molecules are used to add amino acids during protein translation.

Genetic material

The cytoskeleton acts to organize and maintain the cell's shape; anchors organelles in place; helps during endocytosis, the uptake of external materials by a cell, and cytokinesis, the separation of daughter cells after cell division; and moves parts of the cell in processes of growth and mobility. The eukaryotic cytoskeleton is composed of microfilaments, intermediate filaments and microtubules. There are a great number of proteins associated with them, each controlling a cell's structure by directing, bundling, and aligning filaments. The prokaryotic cytoskeleton is less well-studied but is involved in the maintenance of cell shape, polarity and cytokinesis.[17] The subunit protein of microfilaments is a small, monomeric protein called actin. The subunit of microtubules is a dimeric molecule called tubulin. Intermediate filaments are heteropolymers whose subunits vary among the cell types in different tissues. But some of the subunit protein of intermediate filaments include vimentin, desmin, lamin (lamins A, B and C), keratin (multiple acidic and basic keratins), neurofilament proteins (NF - L, NF - M).

A fluorescent image of an endothelial cell. Nuclei are stained blue, mitochondria are stained red, and microfilaments are stained green.

Cytoskeleton

The cell membrane, or plasma membrane, is a biological membrane that surrounds the cytoplasm of a cell. In animals, the plasma membrane is the outer boundary of the cell, while in plants and prokaryotes it is usually covered by a cell wall. This membrane serves to separate and protect a cell from its surrounding environment and is made mostly from a double layer of phospholipids, which are amphiphilic (partly hydrophobic and partly hydrophilic). Hence, the layer is called a phospholipid bilayer, or sometimes a fluid mosaic membrane. Embedded within this membrane is a variety of protein molecules that act as channels and pumps that move different molecules into and out of the cell. The membrane is said to be 'semi-permeable', in that it can either let a substance (molecule or ion) pass through freely, pass through to a limited extent or not pass through at all. Cell surface membranes also contain receptor proteins that allow cells to detect external signaling molecules such as hormones.

Membrane

All cells, whether hemoglobin) possess DNA, the hereditary material of genes, and RNA, containing the information necessary to build various proteins such as enzymes, the cell's primary machinery. There are also other kinds of biomolecules in cells. This article lists these primary components of the cell, then briefly describes their function.

Illustration depicting major structures inside a eukaryotic animal cell

Subcellular components

Parakaryon myojinensis is a species of single-celled organisms described in 2012 and known by a unique example.[16] It has a nucleus and other endosymbionts (organisms living within other cells), so would appear to be a Eukaryote. However the nuclear membrane is a single layer, not a double layer and the DNA is stored in filaments - like in prokaryotic bacteria. So it is not clear if it can be classified as either a Eukaryote or a Prokaryote.

Parikaryotic cells

  • The plasma membrane resembles that of prokaryotes in function, with minor differences in the setup. Cell walls may or may not be present.
  • The eukaryotic DNA is organized in one or more linear molecules, called mitochondria also contain some DNA.
  • Many eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, mechanosensation, and thermosensation. Cilia may thus be "viewed as a sensory cellular antennae that coordinates a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation."[14]
  • Motile cells of eukaryotes can move using motile cilia or flagella. Motile cells are absent in conifers and flowering plants.[15] Eukaryotic flagella are less complex than those of prokaryotes.

Plants, animals, fungi, slime moulds, protozoa, and algae are all

Structure of a typical plant cell
Structure of a typical animal cell

Eukaryotic cells

  • On the outside, flagella and pili project from the cell's surface. These are structures (not present in all prokaryotes) made of proteins that facilitate movement and communication between cells.
  • Enclosing the cell is the cell envelope – generally consisting of a cell wall covering a plasma membrane though some bacteria also have a further covering layer called a capsule. The envelope gives rigidity to the cell and separates the interior of the cell from its environment, serving as a protective filter. Though most prokaryotes have a cell wall, there are exceptions such as Mycoplasma (bacteria) and Thermoplasma (archaea). The cell wall consists of peptidoglycan in bacteria, and acts as an additional barrier against exterior forces. It also prevents the cell from expanding and bursting (cytolysis) from osmotic pressure due to a hypotonic environment. Some eukaryotic cells (plant cells and fungal cells) also have a cell wall.
  • Inside the cell is the cytoplasmic region that contains the genome (DNA), ribosomes and various sorts of inclusions. The genetic material is freely found in the cytoplasm. Prokaryotes can carry extrachromosomal DNA elements called plasmids, which are usually circular. Linear bacterial plasmids have been identified in several species of spirochete bacteria, including members of the genus Borrelia notably Borrelia burgdorferi, which causes Lyme disease.[13] Though not forming a nucleus, the DNA is condensed in a nucleoid. Plasmids encode additional genes, such as antibiotic resistance genes.

A prokaryotic cell has three architectural regions:

[12]