Mariner 4

Mariner 4

Mariner 4
The Mariner 4 spacecraft
Mission type Mars flyby
Operator NASA / JPL
COSPAR ID 1964-077A
SATCAT № 942
Mission duration 3 years, 23 days
Spacecraft properties
Manufacturer Jet Propulsion Laboratory
Launch mass 260.8 kilograms (575 lb)
Power 310 watts (at Mars encounter)
Start of mission
Launch date November 28, 1964, 14:22:01 (1964-11-28T14:22:01Z) UTC
Rocket Atlas LV-3 Agena-D
Launch site

Cape Canaveralr planetary exploration in a flyby mode. It was designed to conduct closeup scientific observations of Mars and to transmit these observations to Earth. Launched on November 28, 1964,[1] Mariner 4 performed the first successful flyby of the planet Mars, returning the first pictures of the Martian surface. It captured the first images of another planet ever returned from deep space; their depiction of a cratered, seemingly dead world largely changed the view of the scientific community on life on Mars.[2][3] Other mission objectives were to perform field and particle measurements in interplanetary space in the vicinity of Mars and to provide experience in and knowledge of the engineering capabilities for interplanetary flights of long duration. On December 21, 1967 communications with Mariner 4 were terminated.

Contents

  • Spacecraft and subsystems 1
  • Spacecraft and subsystems 2
  • Name 3
  • References 4

Spacecraft and subsystems

The Mariner 4 spacecraft consisted of an octagonal magnesium frame, 127 cm across a diagonal and 45.7 cm high. Four solar panels were attached to the top of the frame with an end-to-end span of 6.88 meters, including solar pressure vanes which extended from the ends. A 116.8 cm diameter high-gain parabolic antenna was mounted at the top of the frame as well. An omnidirectional low-gain antenna was mounted on a seven foot, four inch (223.5 cm) tall mast next to the high-gain antenna. The overall height of the spacecraft was 2.89 meters. The octagonal frame housed the electronic equipment, cabling, midcourse propulsion system, and attitude LC-12
End of mission
Last contact December 21, 1967
Orbital parameters
Reference system Heliocentric
Semi-major axis 199,591,220 kilometres (124,020,230 mi)
Eccentricity 0.17024754
Perihelion 165,611,300 kilometres (102,906,100 mi)
Apohelion 233,571,130 kilometres (145,134,370 mi)
Inclination 2.51 degrees
Period 562.888 days
Flyby of Mars
Closest approach July 15, 1965, 01:00:57 UTC
Distance 9,846 kilometers (6,118 miles)
Instruments
Cosmic dust detector
Cosmic ray telescope
Geiger counter/ionization chamber
Helium magnetometer
Solar plasma probe
Trapped radiation detector
TV camera

Mariner 4 (together with Mariner 3 known as Mariner–Mars 1964) was the fourth in a series of spacecraft intended focontrol gas supplies and regulators.

The scientific instruments included:[4][5][6]

  • A helium magnetometer, mounted on the waveguide leading to the omnidirectional antenna, to measure the magnitude and other characteristics of the interplanetary and planetary magnetic fields.
  • An ionization chamber/Geiger counter, mounted on the waveguide leading to the omnidirectional antenna nearer the body of the spacecraft, to measure the charged-particle intensity and distribution in interplanetary space and in the vicinity of Mars.
  • A trapped radiation detector, mounted on the body with counter-axes pointing 70° and 135° from the solar direction, to measure the intensity and direction of low-energy particles.
  • A cosmic ray telescope, mounted inside the body pointing in anti-solar direction, to measure the direction and energy spectrum of protons and alpha particles.
  • A solar plasma probe, mounted on the body pointing 10° from the solar direction, to measure the very low energy charged particle flux from the Sun.
  • A cosmic dust detector, mounted on the body with microphone plate approximately perpendicular to the plane of orbit, to measure the momentum, distribution, density, and direction of cosmic dust.
  • A television camera, mounted on a scan platform at the bottom center of the spacecraft, to obtain closeup pictures of the surface of Mars. This subsystem consisted of 4 parts, a Cassegrain telescope with a 1.05° by 1.05° field of view, a shutter and red/green filter assembly with 0.08s and 0.20s exposure times, a slow scan vidicon tube which translated the optical image into an electrical
Mariner 4
The Mariner 4 spacecraft
Mission type Mars flyby
Operator NASA / JPL
COSPAR ID 1964-077A
SATCAT № 942
Mission duration 3 years, 23 days
Spacecraft properties
Manufacturer Jet Propulsion Laboratory
Launch mass 260.8 kilograms (575 lb)
Power 310 watts (at Mars encounter)
Start of mission
Launch date November 28, 1964, 14:22:01 (1964-11-28T14:22:01Z) UTC
Rocket Atlas LV-3 Agena-D
Launch site Cape Canaveral LC-12
End of mission
Last contact December 21, 1967
Orbital parameters
Reference system Heliocentric
Semi-major axis
Eccentricity 0.17024754
Perihelion 165,611,300 kilometres (102,906,100 mi)
Apohelion 233,571,130 kilometres (145,134,370 mi)
Inclination 2.51 degrees
Period 562.888 days
Flyby of Mars
Closest approach July 15, 1965, 01:00:57 UTC
Distance 9,846 kilometers (6,118 miles)
Instruments
Cosmic dust detector
Cosmic ray telescope
Geiger counter/ionization chamber
Helium magnetometer
Solar plasma probe
Trapped radiation detector
TV camera

Mariner 4 (together with Mariner 3 known as Mariner–Mars 1964) was the fourth in a series of spacecraft intended for planetary exploration in a flyby mode. It was designed to conduct closeup scientific observations of Mars and to transmit these observations to Earth. Launched on November 28, 1964,[1] Mariner 4 performed the first successful flyby of the planet Mars, returning the first pictures of the Martian surface. It captured the first images of another planet ever returned from deep space; their depiction of a cratered, seemingly dead world largely changed the view of the scientific community on life on Mars.[2][3] Other mission objectives were to perform field and particle measurements in interplanetary space in the vicinity of Mars and to provide experience in and knowledge of the engineering capabilities for interplanetary flights of long duration. On December 21, 1967 communications with Mariner 4 were terminated.

Spacecraft and subsystems

The Mariner 4 spacecraft consisted of an octagonal magnesium frame, 127 cm across a diagonal and 45.7 cm high. Four solar panels were attached to the top of the frame with an end-to-end span of 6.88 meters, including solar pressure vanes which extended from the ends. A 116.8 cm diameter high-gain parabolic antenna was mounted at the top of the frame as well. An omnidirectional low-gain antenna was mounted on a seven foot, four inch (223.5 cm) tall mast next to the high-gain antenna. The overall height of the spacecraft was 2.89 meters. The octagonal frame housed the electronic equipment, cabling, midcourse propulsion system, and attitude control gas supplies and regulators.

The scientific instruments included:[4][5][6]

  • A helium magnetometer, mounted on the waveguide leading to the omnidirectional antenna, to measure the magnitude and other characteristics of the interplanetary and planetary magnetic fields.
  • An ionization chamber/Geiger counter, mounted on the waveguide leading to the omnidirectional antenna nearer the body of the spacecraft, to measure the charged-particle intensity and distribution in interplanetary space and in the vicinity of Mars.
  • A trapped radiation detector, mounted on the body with counter-axes pointing 70° and 135° from the solar direction, to measure the intensity and direction of low-energy particles.
  • A cosmic ray telescope, mounted inside the body pointing in anti-solar direction, to measure the direction and energy spectrum of protons and alpha particles.
  • A solar plasma probe, mounted on the body pointing 10° from the solar direction, to measure the very low energy charged particle flux from the Sun.
  • A cosmic dust detector, mounted on the body with microphone plate approximately perpendicular to the plane of orbit, to measure the momentum, distribution, density, and direction of cosmic dust.
  • A television camera, mounted on a scan platform at the bottom center of the spacecraft, to obtain closeup pictures of the surface of Mars. This subsystem consisted of 4 parts, a Cassegrain telescope with a 1.05° by 1.05° field of view, a shutter and red/green filter assembly with 0.08s and 0.20s exposure times, a slow scan vidicon tube which translated the optical image into an electrical video signal, and the electronic systems required to convert the analogue signal into a digital bitstream for transmission.[7]
Mariner 4 is prepared for a weight test on November 1, 1963

The electrical power for the instruments and the radio transmitter of Mariner 4 was supplied by 28,224 solar cells contained in the four 176 x 90 cm solar panels, which could provide 310 watts at the distance of Mars. A rechargeable 1200 W·h silver-zinc battery was also used for maneuvers and backup. Monopropellant hydrazine was used for propulsion, via a four-jet vane vector control motor, with 222-newton (50 lbf) thrust, installed on one of the sides of the octagonal structure. The space probe's attitude control was provided by 12 cold nitrogen gas jets mounted on the ends of the solar panels and three gyros. Solar pressure vanes, each with an area of 0.65 square meter (seven ft²),== Taxonavigation == Species:

Name

  • Madlabium Hedge, Fl. Madag. 175: 260 (1998)

References

  • Hedge, I.C. (1998) Flore de Madagascar et des Comores 175: 260–261.
  • WCSP 2014. World Checklist of selected plant families. The Board of Trustees of the Royal Botanic Gardens, Kew. Published on the internet. Accessed: 2014-June-26.
  • International Organization for Plant Information (IOPI). "Plant Name Search Results" (HTML).