Cell potency is a general term which describes a stem cell's ability to differentiate into different cell types.[1] [2] The more cell types a stem cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell which like a continuum begins with totipotency to designate a cell with the most differentiation potential, pluripotency, multipotency, oligopotency and finally unipotency. Potency is taken from the Latin term "potens" which means "having power."


Totipotency is the ability of a single cell to divide and produce all of the differentiated cells in an organism, and example totipotent cells are spores and zygotes. [3] In the spectrum of cell potency, totipotency represents the cell with the greatest differentiation potential. Toti comes from the Latin totus which means "entirely."

It is possible for a fully differentiated cell to return to a state of totipotency.[4] This conversion to totipotency is complex, not fully understood and the subject of recent research. Research in 2011 has shown that cells may differentiate not into a fully totipotent cell, but instead into a "complex cellular variation" of totipotency.[5]

The human development model is one which can be used to describe how totipotent cells arise.[6] Human development begins when a sperm fertilizes an egg and the resulting fertilized egg creates a single totipotent cell, a zygote.[7] In the first hours after fertilization, this zygote divides into identical totipotent cells, which can later develop into any of the three germ layers of a human (endoderm, mesoderm, or ectoderm), into cells of the cytotrophoblast layer or syncytiotrophoblast layer of the placenta. After reaching a 16-cell stage, the totipotent cells of the morula differentiate into cells that will eventually become either the blastocyst's Inner cell mass or the outer trophoblasts. Approximately four days after fertilization and after several cycles of cell division, these totipotent cells begin to specialize. The inner cell mass, the source of embryonic stem cells, becomes pluripotent.

Research on Caenorhabditis elegans suggests that multiple mechanisms including RNA regulation may play a role in maintaining totipotency at different stages of development in some species.[8] Work with zebrafish and mammals suggest a further interplay between miRNA and RNA binding proteins (RBPs) in determining development differences.[9]


For substances having the capacity to produce several distinct biological responses see Pluripotency (biological compounds)
Main article: Stem cell

In cell biology, pluripotency (from the Latin plurimus, meaning very many, and potens, meaning having power)[10] refers to a stem cell that has the potential to differentiate into any of the three germ layers: endoderm (interior stomach lining, gastrointestinal tract, the lungs), mesoderm (muscle, bone, blood, urogenital), or ectoderm (epidermal tissues and nervous system).[11] However, cell pluripotency is a continuum, ranging from the completely pluripotent cell that can form every cell of the embryo proper, e.g., embyronic stem cells and iPSCs, to the incompletely or partially pluripotent cell that can form cells of all three germ layers but that may not exhibit all the characteristics of completely pluripotent cells.

Induced pluripotency

Induced pluripotent stem cells, commonly abbreviated as iPS cells or iPSCs are a type of pluripotent stem cell artificially derived from a non-pluripotent cell, typically an adult somatic cell, by inducing a "forced" expression of certain genes and transcription factors.[12] These transcription factors play a key role in determining the state of these cells and also highlights the fact that these somatic cells do preserve the same genetic information as early embryonic cells.[13] The ability to induce cells into a pluripotent state was initially pioneered using mouse fibroblasts and four transcription factors, Oct4, Sox2, Klf4 and c-Myc, in 2006.[14] This was then followed in 2007 by the successful induction of human iPSCs derived from human dermal fibroblasts using methods similar to those used for the induction of mouse cells.[15] These induced cells exhibit similar traits to those of embryonic stem cells (ESCs) but do not require the use of embryos. Some of the similarities between ESCs and iPSCs include pluripotency, morphology, self-renewal ability, a trait that implies that they can divide and replicate indefinitely, and gene expression.[16]

Epigenetic factors are also thought to be involved in the actual reprogramming of somatic cells in order to induce pluripotency. It has been theorized that certain epigenetic factors might actually work to clear the original somatic epigenetic marks in order to acquire the new epigenetic marks that are part of achieving a pluripotent state. Chromatin is also reorganized in iPSCs and becomes like that found in ESCs in that it is less condensed and therefore more accessible. Euchromatin modifications are also common which is also consistent with the state of euchromatin found in ESCs.[16]

Due to their great similarity to ESCs, iPSCs have been of great interest to the medical and research community. iPSCs could potentially have the same therapeutic implications and applications as ESCs but without the controversial use of embryos in the process, a topic of great bioethical debate. In fact, the induced pluripotency of somatic cells into undifferentiated iPS cells was originally hailed as the end of the controversial use of embryonic stem cells. However, iPSCs were found to be potentially tumorigenic, and, despite advances,[12] were never approved for clinical stage research in the United States. Setbacks such as low replication rates and early senescence have also been encountered when making iPSCs,[17] hindering their use as ESCs replacements.

Additionally, it has been determined that the somatic expression of combined transcription factors can directly induce other defined somatic cell fates; researchers identified three neural-lineage-specific transcription factors that could directly convert mouse fibroblasts (skin cells) into fully functional neurons.[18] This result challenges the terminal nature of cellular differentiation and the integrity of lineage commitment; and implies that with the proper tools, all cells are totipotent and may form all kinds of tissue.

Some of the possible medical and therapeutic uses for iPSCs derived from patients include their use in cell and tissue transplants without the risk of rejection that is commonly encountered. iPSCs can potentially replace animal models unsuitable as well as in-vitro models used for disease research.[19]


Further information: Progenitor cells

Multipotency describes progenitor cells which have the gene activation potential to differentiate into multiple, but limited cell types. For example, a multipotent blood stem cell is a hematopoietic cell — and this cell type can itself differentiate into several types of blood cell types like lymphocytes, monocytes, neutrophils, etc., but cannot differentiate into brain cells, bone cells or other non-blood cell types.

New research related to multipotent cells suggests that multipotent cells may be capable of conversion into unrelated cell types. In one case, fibroblasts were converted into functional neurons.[18] In another case, human umbilical cord blood stem cells were converted into human neurons.[20] Research is also focusing on converting multipotent cells into pluripotent cells [21]

Multipotent cells are found in many, but not all human cell types. Multipotent cells have been found in adipose tissue,[22] cardiac cells,[23] bone marrow, and mesenchymal stromal cells (MSCs) which are found in the third molar.[24]

MSCs may prove to be a good, reliable source for stem cells because of the ease in collection of molars at 8–10 years of age and before adult dental calcification. MSCs can differentiate into osteoblasts, chondrocytes, and adipocytes.[25]


In biology, oligopotency is the ability of progenitor cells to differentiate into a few cell types. It is a degree of potency. Examples of oligopotent stem cells are the lymphoid or myeloid stem cells.[1] A lymphoid cell specifically, can give rise to various blood cells such as B and T cells, however, not to a different blood cell type like a red blood cell.[26] Examples of progenitor cells are vascular stem cells that have the capacity to become both endothelial or smooth muscle cells.


Further information: Precursor cell

In cell biology, a unipotent cell is the concept that one stem cell has the capacity to differentiate into only one cell type. It is currently unclear if true unipotent stem cells exist. Hepatoblasts, which differentiate in hepatocytes (which constitutes most of the liver) and cholangiocytes (epithelial cells of the bile duct), are bipotent.[27] A close synonym for unipotent cell is precursor cell.

See also

  • Induced stem cells