Stokes wave
In perturbation series approach, now known as the Stokes expansion – obtained approximate solutions for nonlinear wave motion.
Stokes' wave theory is of direct practical use for waves on intermediate and deep water. It is used in the design of coastal and offshore structures, in order to determine the wave kinematics (free surface elevation and flow velocities). The wave kinematics are subsequently needed in the design process to determine the wave loads on a structure.^{[2]} For long waves (as compared to depth) – and using only a few terms in the Stokes expansion – its applicability is limited to waves of small amplitude. In such shallow water, a cnoidal wave theory often provides better periodicwave approximations.
While, in the strict sense, Stokes wave refers to progressive periodic waves of permanent form, the term is also used in connection with standing waves^{[3]} and even for random waves.^{[4]}^{[5]}
Contents
Examples
The examples below describe Stokes waves under the action of gravity (without surface tension effects) in case of pure wave motion, so without an ambient mean current.
Thirdorder Stokes wave on deep water
According to Stokes' thirdorder theory, the free surface elevation η, the velocity potential Φ, the phase speed (or celerity) c and the wave phase θ are, for a progressive surface gravity wave on deep water – i.e. the fluid layer has infinite depth:^{[6]}
 \begin{align} \eta(x,t) =& a \left\{ \cos \theta + \tfrac12 (k a)\, \cos 2\theta + \tfrac38 (k a)^2\, \cos 3\theta \right\} \\ & + \mathcal{O}\left( (ka)^4 \right), \\ \Phi(x,z,t) =& a\frac{\omega}{k}\, \text{e}^{kz}\, \sin \theta + \mathcal{O}\left( (ka)^4 \right), \\ c =& \frac{\omega}{k} = \left( 1 + \tfrac12 (ka)^2 \right)\, \sqrt{\frac{g}{k}} + \mathcal{O}\left( (ka)^4 \right), \text{ and} \\ \theta(x,t) =& kx  \omega t, \end{align}
x  : the horizontal coordinate; 
z  : the vertical coordinate, with the positive zdirection upward – opposing to the direction of the Earth's gravity – and z = 0 corresponding with the mean surface elevation; 
t  : time; 
a  : the firstorder wave amplitude; 
k  : the angular wavenumber, k = 2π / λ with λ being the wavelength; 
ω  : the angular frequency, ω = 2π / τ where τ is the period, and 
g  : the strength of the Earth's gravity, a constant in this approximation. 
The expansion parameter ka is known as the wave steepness. The phase speed increases with increasing nonlinearity ka of the waves. The wave height H, being the difference between the surface elevation η at a crest and a trough, is:^{[7]}
 H = 2a\, \left( 1 + \tfrac38\, k^2 a^2 \right).
Note that the second and thirdorder terms in the velocity potential Φ are zero. Only at fourth order contributions deviating from firstorder theory – i.e. Airy wave theory – appear.^{[6]} Up to third order the orbital velocity field u = ∇Φ consists of a circular motion of the velocity vector at each position (x,z). As a result, the surface elevation of deepwater waves is to a good approximation trochoidal, as already noted by Stokes (1847).^{[8]}
Stokes further observed, that although (in this Eulerian description) the thirdorder orbital velocity field consists of a circular motion at each point, the Lagrangian paths of fluid parcels are not closed circles. This is due to the reduction of the velocity amplitude at increasing depth below the surface. This Lagrangian drift of the fluid parcels is known as the Stokes drift.^{[8]}
Secondorder Stokes wave on arbitrary depth
The surface elevation η and the velocity potential Φ are, according to Stokes' secondorder theory of surface gravity waves on a fluid layer of mean depth h:^{[6]}^{[9]}
 \begin{align} \eta(x,t) =& a\, \left\{ \cos\, \theta + ka\, \frac{3  \sigma^2}{4\, \sigma^3}\, \cos\, 2\theta \right\} \\ & + \mathcal{O} \left( (ka)^3 \right), \\ \Phi(x,z,t) =& a\, \frac{\omega}{k}\, \frac{\cosh\, k(z+h)}{\sinh\, kh} \\ & \times \left\{ \sin\, \theta + ka\, \frac{3 \cosh\, 2k(z+h)}{8\, \sinh^3\, kh}\, \sin\, 2\theta \right\} \\ &  (ka)^2\, \frac{1}{2\, \sinh\, 2kh}\, \frac{g\, t}{k} + \mathcal{O} \left( (ka)^3 \right), \\ c =& \frac{\omega}{k} = \sqrt{\frac{g}{k}\, \sigma} + \mathcal{O} \left( (ka)^2 \right), \\ \sigma =& \tanh\, kh \quad \text{and} \quad \theta(x,t) = k x  \omega t. \end{align}
Observe that for finite depth the velocity potential Φ contains a linear drift in time, independent of position (x and z). Both this temporal drift and the doublefrequency term (containing sin 2θ) in Φ vanish for deepwater waves.
Stokes and Ursell parameters
The ratio S of the freesurface amplitudes at second or and first order – according to Stokes' secondorder theory – is:^{[6]}
 \mathcal{S} = ka\, \frac{3  \tanh^2\, kh}{4\, \tanh^3\, kh}.
In deep water, for large kh the ratio S has the asymptote
 \lim_{kh \to \infty} \mathcal{S} = \frac{1}{2}\, ka.
For long waves, i.e. small kh, the ratio S behaves as
 \lim_{kh \downarrow 0} \mathcal{S} = \frac{3}{4}\, \frac{ka}{(kh)^3},
or, in terms of the wave height H = 2 a and wavelength λ = 2π / k:
 \lim_{kh \downarrow 0} \mathcal{S} = \frac{3}{32\,\pi^2}\, \frac{H\, \lambda^2}{h^3} = \frac{3}{32\,\pi^2}\, \mathcal{U}, with \mathcal{U} \equiv \frac{H\, \lambda^2}{h^3}.
Here U is the Ursell parameter (or Stokes parameter). For long waves (λ ≫ h) of small height H, i.e. U ≪ 32π^{2}/3 ≈ 100, secondorder Stokes theory is applicable. Otherwise, for fairly long waves (λ > 7 h) of appreciable height H a cnoidal wave description is more appropriate.^{[6]} According to Hedges, fifthorder Stokes theory is applicable for U < 40, and otherwise fifthorder cnoidal wave theory is preferable.^{[10]}^{[11]}
Thirdorder dispersion relation
For Stokes waves under the action of gravity, the thirdorder dispersion relation is – according to Stokes' first definition of celerity:^{[9]}
 \begin{align} \omega^2 =& \left( gk\, \tanh\, kh \right)\; \left\{ 1 + \frac{9  10\, \sigma^2 + 9\, \sigma^4}{8\, \sigma^4}\, ( ka )^2 \right\} \\ &+ \mathcal{O}\left( (ka)^4 \right), \qquad \text{with} \\ \sigma =& \tanh\, kh. \end{align}
This thirdorder dispersion relation is a direct consequence of avoiding secular terms, when inserting the secondorder Stokes solution into the thirdorder equations (of the perturbation series for the periodic wave problem).
In deep water (short wavelength compared to the depth):
 \lim_{kh \to \infty} \omega^2 = gk\, \left\{ 1 + \left( ka \right)^2 \right\} + \mathcal{O}\left( (ka)^4 \right),
and in shallow water (long wavelengths compared to the depth):
 \lim_{kh \downarrow 0} \omega^2 = k^2\, gh\, \left\{ 1 + \frac98\, \frac{\left( ka \right)^2}{\left( kh \right)^4} \right\} + \mathcal{O}\left( (ka)^4 \right).
As shown above, the longwave Stokes expansion for the dispersion relation will only be valid for small enough values of the Ursell parameter: U ≪ 100.
Overview
Stokes' approach to the nonlinear wave problem
A fundamental problem in finding solutions for surface gravity waves is, that potential flow quantities in a Taylor series around the mean (or still) surface elevation.^{[12]} As a result, the boundary conditions can be expressed in terms of quantities at the mean (or still) surface elevation (which is fixed and known).
Next, a solution for the nonlinear wave problem (including the Taylor series expansion around the mean or still surface elevation) is sought by means of a perturbation series – known as the Stokes expansion – in terms of a small parameter, most often the wave steepness. The unknown terms in the expansion can be solved sequentially.^{[6]}^{[8]} Often, only a small number of terms is needed to provide a solution of sufficient accuracy for engineering purposes.^{[11]} Typical applications are in the design of coastal and offshore structures, and of ships.
Another property of nonlinear waves is that the phase speed of nonlinear waves depends on the wave height. In a perturbationseries approach, this easily gives rise to a spurious secular variation of the solution, in contradiction with the periodic behaviour of the waves. Stokes solved this problem by also expanding the dispersion relationship into a perturbation series, by a method now known as the Lindstedt–Poincaré method.^{[6]}
Applicability
Stokes' wave theory, when using a low order of the perturbation expansion (e.g. up to second, third or fifth order), is valid for nonlinear waves on intermediate and deep water, that is for wavelengths (λ) not large as compared with the mean depth (h). In shallow water, the loworder Stokes expansion breaks down (gives unrealistic results) for appreciable wave amplitude (as compared to the depth). Then, Boussinesq approximations are more appropriate. Further approximations on Boussinesqtype (multidirectional) wave equations lead – for oneway wave propagation – to the Korteweg–de Vries equation or the Benjamin–Bona–Mahony equation. Like (near) exact Stokeswave solutions,^{[14]} these two equations have solitary wave (soliton) solutions, besides periodicwave solutions known as cnoidal waves.^{[11]}
Modern extensions
Already in 1914, Wilton extended the Stokes expansion for deepwater surface gravity waves to tenth order, although introducing errors at the eight order.^{[15]} A fifthorder theory for finite depth was derived by De in 1955.^{[16]} For engineering use, the fifthorder formulations of Fenton are convenient, applicable to both Stokes first and second definition of phase speed (celerity).^{[17]} The demarcation between when fifthorder Stokes theory is preferable over fifthorder cnoidal wave theory is for Ursell parameters below about 40.^{[10]}^{[11]}
Different choices for the frame of reference and expansion parameters are possible in Stokeslike approaches to the nonlinear wave problem. In 1880, Stokes himself inverted the dependent and independent variables, by taking the velocity potential and stream function as the independent variables, and the coordinates (x,z) as the dependent variables, with x and z being the horizontal and vertical coordinates respectively.^{[18]} This has the advantage that the free surface, in a frame of reference in which the wave is steady (i.e. moving with the phase velocity), corresponds with a line on which the stream function is a constant. Then the free surface location is known beforehand, and not an unknown part of the solution. The disadvantage is that the radius of convergence of the rephrased series expansion reduces.^{[19]}
Another approach is by using the Lagrangian frame of reference, following the fluid parcels. The Lagrangian formulations show enhanced convergence, as compared to the formulations in both the Eulerian frame, and in the frame with the potential and streamfunction as independent variables.^{[20]}^{[21]}
An exact solution for nonlinear pure capillary waves of permanent form, and for infinite fluid depth, was obtained by Crapper in 1957. Note that these capillary waves – being short waves forced by surface tension, if gravity effects are negligible – have sharp troughs and flat crests. This contrasts with nonlinear surface gravity waves, which have sharp crests and flat troughs.^{[22]}
By use of computer models, the Stokes expansion for surface gravity waves has been continued, up to high (117th) order by Schwartz (1974). Schwartz has found that the amplitude a (or a_{1}) of the firstorder fundamental reaches a maximum before the maximum wave height H is reached. Consequently, the wave steepness ka in terms of wave amplitude is not a monotone function up to the highest wave, and Schwartz utilizes instead kH as the expansion parameter. To estimate the highest wave in deep water, Schwartz has used Padé approximants and Domb–Sykes plots in order to improve the convergence of the Stokes expansion. Extended tables of Stokes waves on various depths, computed by a different method (but in accordance with the results by others), are provided in Williams (1981, 1985).
Several exact relationships exist between integral properties – such as kinetic and potential energy, horizontal wave momentum and radiation stress – as found by LonguetHiggins (1975). He shows, for deepwater waves, that many of these integral properties have a maximum before the maximum wave height is reached (in support of Schwartz's findings). Cokelet (1978), using a method similar to the one of Schwartz, computed and tabulated integral properties for a wide range of finite water depths (all reaching maxima below the highest wave height). Further, these integral properties play an important role in the conservation laws for water waves, through Noether's theorem.^{[25]}
In 2005, Hammack, Henderson and Segur have provided the first experimental evidence for the existence of threedimensional progressive waves of permanent form in deep water – that is biperiodic and twodimensional progressive wave patterns of permanent form.^{[26]} The existence of these threedimensional steady deepwater waves has been revealed in 2002, from a bifurcation study of twodimensional Stokes waves by Craig and Nicholls, using numerical methods.^{[27]}
Convergence and instability
Convergence
Convergence of the Stokes expansion was first proved by LeviCivita (1925) for the case of smallamplitude waves – on the free surface of a fluid of infinite depth. This was extended shortly afterwards by Struik (1926) for the case of finite depth and smallamplitude waves.^{[28]}
Near the end of the 20th century, it was shown that for finiteamplitude waves the convergence of the Stokes expansion depends strongly on the formulation of the periodic wave problem. For instance, an inverse formulation of the periodic wave problem as used by Stokes – with the spatial coordinates as a function of velocity potential and stream function – does not converge for highamplitude waves. While other formulations converge much more rapidly, e.g. in the Eulerian frame of reference (with the velocity potential or stream function as a function of the spatial coordinates).^{[19]}
Highest wave
The maximum wave steepness, for periodic and propagating deepwater waves, is H / λ ≈ 0.1412, so the wave height is about oneseventh (1/7) of the wavelength λ.^{[24]} And surface gravity waves of this maximum height have a sharp wave crest – with an angle of 120° (in the fluid domain) – also for finite depth, as shown by Stokes in 1880.^{[18]}
An accurate estimate of the highest wave steepness in deep water (H / λ ≈ 0.142) was already made in 1893, by John Henry Michell, using a numerical method.^{[29]} A more detailed study of the behaviour of the highest wave near the sharpcornered crest has been published by Malcolm A. Grant, in 1973.^{[30]} The existence of the highest wave on deep water – having a sharpangled crest of 120° – was proved by John Toland in 1978.^{[31]}
The highest Stokes wave – under the action of gravity – can be approximated with the following simple and accurate representation of the free surface elevation η(x,t):^{[32]}
 \frac{\eta}{\lambda} = A\, \left[ \cosh\, \left( \frac{xct}{\lambda} \right)  1 \right], with A = \frac{1}{\sqrt{3}\, \sinh \left( \frac12 \right)} \approx 1.108, for \tfrac12\,\lambda \le (xct) \le \tfrac12\, \lambda,
and shifted horizontally over an integer number of wavelengths to represent the other waves in the regular wave train. This approximation is accurate to within 0.7% everywhere, as compared with the "exact" solution for the highest wave.^{[32]}
Another accurate approximation – however less accurate than the previous one – of the fluid motion on the surface of the steepest wave is by analogy with the swing of a pendulum in a grandfather clock.^{[33]}
Instability
In deeper water, Stokes waves are unstable.^{[34]} This was shown by T. Brooke Benjamin and Jim E. Feir in 1967.^{[35]}^{[36]} The Benjamin–Feir instability is a sideband or modulational instability, with the sideband modulations propagating in the same direction as the carrier wave; waves become unstable on deeper water for a relative depth kh > 1.363 (with k the wavenumber and h the mean water depth).^{[37]} The Benjamin–Feir instability can be described with the nonlinear Schrödinger equation, by inserting a Stokes wave with side bands.^{[34]} Subsequently, with a more refined analysis, it has been shown – theoretically and experimentally – that the Stokes wave and its side bands exhibit Fermi–Pasta–Ulam recurrence: a cyclic alternation between modulation and demodulation.^{[38]}
In 1978 LonguetHiggins, by means of numerical modelling of fully nonlinear waves and modulations (propagating in the carrier wave direction), presented a detailed analysis of the region of instability in deep water.^{[39]}^{[40]} In LonguetHiggins studies of twodimensional wave motion, as well as the subsequent studies of threedimensional modulations by McLean et al., new types of instabilities were found – these are associated with resonant wave interactions between five (or more) wave components.^{[41]}^{[42]}^{[43]}
Stokes expansion
Governing equations for a potential flow
In many instances, the oscillatory flow in the fluid interior of surface waves can be described accurately using potential flow theory, apart from boundary layers near the free surface and bottom (where vorticity is important, due to viscous effects, see Stokes boundary layer).^{[44]} Then, the flow velocity u can be described as the gradient of a velocity potential Φ:

\mathbf{u} = \boldsymbol{\nabla} \Phi.
(A )
Consequently, assuming incompressible flow, the velocity field u is divergencefree and the velocity potential Φ satisfies Laplace's equation^{[44]}

\nabla^2 \Phi = 0
(B )
in the fluid interior.
The fluid region is described using threedimensional Cartesian coordinates (x,y,z), with x and y the horizontal coordinates, and z the vertical coordinate – with the positive zdirection opposing the direction of the gravitational acceleration. Time is denoted with t. The free surface is located at z = η(x,y,t), and the bottom of the fluid region is at z = −h(x,y).
The freesurface boundary conditions for surface gravity waves – using a potential flow description – consist of a kinematic and a dynamic boundary condition.^{[45]} The kinematic boundary condition ensures that the normal component of the fluid's flow velocity u = (∂Φ/∂x, ∂Φ/∂y, ∂Φ/∂z)^{T} at the free surface equals the normal velocity component of the freesurface motion z = η(x,y,t):

\frac{\partial \eta}{\partial t} + \frac{\partial \Phi}{\partial x}\, \frac{\partial \eta}{\partial x} + \frac{\partial \Phi}{\partial y}\, \frac{\partial \eta}{\partial y} = \frac{\partial \Phi}{\partial z} \qquad \text{ at } z=\eta(x,y,t).
(C )
The dynamic boundary condition states that, without surface tension effects, the atmospheric pressure just above the free surface equals the fluid pressure just below the surface. For an unsteady potential flow this means that the Bernoulli equation is to be applied at the free surface. In case of a constant atmospheric pressure, the dynamic boundary condition becomes:

\frac{\partial \Phi}{\partial t} + \tfrac12\, \left \mathbf{u} \right^2 + g\, \eta = 0 \qquad \text{ at } z=\eta(x,y,t),
(D )
where the constant atmospheric pressure has been taken equal to zero, without loss of generality.
Both boundary conditions contain the potential Φ as well as the surface elevation η. A (dynamic) boundary condition in terms of only the potential Φ can be constructed by taking the material derivative of the dynamic boundary condition, and using the kinematic boundary condition:^{[44]}^{[45]}^{[46]}
 {\color{Gray}{ \Bigl( \frac{\partial}{\partial t} + \mathbf{u} \cdot \boldsymbol{\nabla} \Bigr)\, \left( \frac{\partial\Phi}{\partial t} + \tfrac12\, \mathbf{u}^2 + g\, \eta \right) = 0}}
 {\color{Gray}{ \Rightarrow \quad \frac{\partial^2 \Phi}{\partial t^2} + g\, \frac{\partial \Phi}{\partial z} + \mathbf{u} \cdot \boldsymbol{\nabla} \frac{\partial \Phi}{\partial t} + \tfrac12\, \frac{\partial}{\partial t} \left( \mathbf{u}^2 \right) + \tfrac12\, \mathbf{u} \cdot \boldsymbol{\nabla} \left( \mathbf{u}^2 \right) = 0}}

{\color{Gray}{ \Rightarrow \quad }} \frac{\partial^2 \Phi}{\partial t^2} + g\, \frac{\partial \Phi}{\partial z} + \frac{\partial}{\partial t} \left( \mathbf{u}^2 \right) + \tfrac12\, \mathbf{u} \cdot \boldsymbol{\nabla} \left( \mathbf{u}^2 \right) = 0 \qquad \text{ at } z=\eta(x,y,t).
(E )
At the bottom of the fluid layer, impermeability requires the normal component of the flow velocity to vanish:^{[44]}

\frac{\partial\Phi}{\partial n} = \frac{1}{\sqrt{ 1 + \left( \frac{\partial h}{\partial x} \right)^2 + \left( \frac{\partial h}{\partial y} \right)^2 }}\, \left\{ \frac{\partial \Phi}{\partial z} + \frac{\partial h}{\partial x}\, \frac{\partial \Phi}{\partial x} + \frac{\partial h}{\partial y}\, \frac{\partial \Phi}{\partial y} \right\} = 0, \qquad \text{ at } z=h(x,y),
(F )
where h(x,y) is the depth of the bed below the datum z = 0 and n is the coordinate component in the direction normal to the bed.
For permanent waves above a horizontal bed, the mean depth h is a constant and the boundary condition at the bed becomes:
 \frac{\partial\Phi}{\partial z} = 0 \qquad \text{ at } z=h.
Taylor series in the freesurface boundary conditions
The freesurface boundary conditions (D) and (E) apply at the yet unknown freesurface elevation z = η(x,y,t). They can be transformed into boundary conditions at a fixed elevation z = constant by use of Taylor series expansions of the flow field around that elevation.^{[44]} Without loss of generality the mean surface elevation – around which the Taylor series are developed – can be taken at z = 0. This assures the expansion is around an elevation in the proximity of the actual freesurface elevation. Convergence of the Taylor series for smallamplitude steadywave motion was proved by LeviCivita (1925).
The following notation is used: the Taylor series of some field f(x,y,z,t) around z = 0 – and evaluated at z = η(x,y,t) – is:^{[47]}
 f(x,y,\eta,t) = \left[ f \right]_0 + \eta\, \left[ \frac{\partial f}{\partial z} \right]_0 + \frac12\, \eta^2\, \left[ \frac{\partial^2 f}{\partial z^2} \right]_0 + \cdots
with subscript zero meaning evaluation at z = 0, e.g.: [f]_{0} = f(x,y,0,t).
Applying the Taylor expansion to freesurface boundary condition Eq. (E) in terms of the potential Φ gives:^{[44]}^{[47]}

\begin{align} & \left[ \frac{\partial^2 \Phi}{\partial t^2} + g\, \frac{\partial \Phi}{\partial z} \right]_0 + \eta \left[ \frac{\partial}{\partial z} \left( \frac{\partial^2 \Phi}{\partial t^2} + g\, \frac{\partial \Phi}{\partial z} \right) \right]_0 + \left[ \frac{\partial}{\partial t} \left( \mathbf{u}^2 \right) \right]_0 \\ & \quad + \tfrac12\, \eta^2 \left[ \frac{\partial^2}{\partial z^2} \left( \frac{\partial^2 \Phi}{\partial t^2} + g\, \frac{\partial \Phi}{\partial z} \right) \right]_0 + \eta \left[ \frac{\partial^2}{\partial t\, \partial z} \left( \mathbf{u}^2 \right) \right]_0 + \biggl[ \tfrac12\, \mathbf{u} \cdot \boldsymbol{\nabla} \left( \mathbf{u}^2 \right) \biggr]_0 \\ & \quad + \cdots = 0, \end{align}
(G )
showing terms up to triple products of η, Φ and u, as required for the construction of the Stokes expansion up to thirdorder O((ka)^{3}). Here, ka is the wave steepness, with k a characteristic wavenumber and a a characteristic wave amplitude for the problem under study. The fields η, Φ and u are assumed to be O(ka).
The dynamic freesurface boundary condition Eq. (D) can be evaluated in terms of quantities at z = 0 as:^{[44]}^{[47]}

\begin{align} & \left[ \frac{\partial \Phi}{\partial t} + g\, \eta \right]_0 + \eta \left[ \frac{\partial^2 \Phi}{\partial t\, \partial z} \right]_0 + \biggl[ \tfrac12\, \left \mathbf{u} \right^2 \biggr]_0 \\ & \quad + \tfrac12\, \eta^2 \left[ \frac{\partial^3 \Phi}{\partial t\, \partial z^2} \right]_0 + \eta \left[ \frac{\partial}{\partial z} \left( \tfrac12\, \left \mathbf{u} \right^2 \right) \right]_0 + \cdots = 0. \end{align}
(H )
The advantages of these Taylorseries expansions fully emerge in combination with a perturbationseries approach, for weakly nonlinear waves (ka ≪ 1).
Perturbationseries approach
The perturbation series are in terms of a small ordering parameter ε ≪ 1 – which subsequently turns out to be proportional to (and of the order of) the wave slope ka, see the series solution in this section.^{[48]} So, take ε = ka:
 \begin{align} \eta &= \varepsilon\, \eta_1 + \varepsilon^2\, \eta_2 + \varepsilon^3\, \eta_3 + \cdots , \\ \Phi &= \varepsilon\, \Phi_1 + \varepsilon^2\, \Phi_2 + \varepsilon^3\, \Phi_3 + \cdots \quad \text{and} \\ \mathbf{u} &= \varepsilon\, \mathbf{u}_1 + \varepsilon^2\, \mathbf{u}_2 + \varepsilon^3\, \mathbf{u}_3 + \cdots . \end{align}
When applied in the flow equations, they should be valid independent of the particular value of ε. By equating in powers of ε, each term proportional to ε to a certain power has to equal to zero. As an example of how the perturbationseries approach works, consider the nonlinear boundary condition (G); it becomes:^{[6]}
 \begin{align} & \varepsilon\, \left\{ \frac{\partial^2 \Phi_1}{\partial t^2} + g\, \frac{\partial \Phi_1}{\partial z} \right\} \\ & + \varepsilon^2\, \left\{ \frac{\partial^2 \Phi_2}{\partial t^2} + g\, \frac{\partial \Phi_2}{\partial z} + \eta_1\, \frac{\partial}{\partial z} \left( \frac{\partial^2 \Phi_1}{\partial t^2} + g\, \frac{\partial \Phi_1}{\partial z} \right) + \frac{\partial}{\partial t} \left( \mathbf{u}_1^2 \right) \right\} \\ & + \varepsilon^3\, \left\{ \frac{\partial^2 \Phi_3}{\partial t^2} + g\, \frac{\partial \Phi_3}{\partial z} + \eta_1\, \frac{\partial}{\partial z} \left( \frac{\partial^2 \Phi_2}{\partial t^2} + g\, \frac{\partial \Phi_2}{\partial z} \right) \right. \\ & \qquad \quad \left. + \eta_2\, \frac{\partial}{\partial z} \left( \frac{\partial^2 \Phi_1}{\partial t^2} + g\, \frac{\partial \Phi_1}{\partial z} \right) + 2\, \frac{\partial}{\partial t} \left( \mathbf{u}_1 \cdot \mathbf{u}_2 \right) \right. \\ & \qquad \quad \left. + \tfrac12\, \eta_1^2\, \frac{\partial^2}{\partial z^2} \left( \frac{\partial^2 \Phi_1}{\partial t^2} + g\, \frac{\partial \Phi_1}{\partial z} \right) + \eta_1\, \frac{\partial^2}{\partial t\, \partial z} \left( \mathbf{u}_1^2 \right) + \tfrac12\, \mathbf{u}_1 \cdot \boldsymbol{\nabla} \left( \mathbf{u}_1^2 \right) \right\} \\ & + \mathcal{O}\left( \varepsilon^4 \right) = 0, \qquad \text{at } z=0. \end{align}
The resulting boundary conditions at z = 0 for the first three orders are:
 First order

\frac{\partial^2 \Phi_1}{\partial t^2} + g\, \frac{\partial \Phi_1}{\partial z} = 0,
(J1 )
 Second order

\frac{\partial^2 \Phi_2}{\partial t^2} + g\, \frac{\partial \Phi_2}{\partial z} =  \eta_1\, \frac{\partial}{\partial z} \left( \frac{\partial^2 \Phi_1}{\partial t^2} + g\, \frac{\partial \Phi_1}{\partial z} \right)  \frac{\partial}{\partial t} \left( \mathbf{u}_1^2 \right),
(J2 )
 Third order

\begin{align} \frac{\partial^2 \Phi_3}{\partial t^2} + g\, \frac{\partial \Phi_3}{\partial z} = &  \eta_1\, \frac{\partial}{\partial z} \left( \frac{\partial^2 \Phi_2}{\partial t^2} + g\, \frac{\partial \Phi_2}{\partial z} \right)  \eta_2\, \frac{\partial}{\partial z} \left( \frac{\partial^2 \Phi_1}{\partial t^2} + g\, \frac{\partial \Phi_1}{\partial z} \right) \\ &  2\, \frac{\partial}{\partial t} \left( \mathbf{u}_1 \cdot \mathbf{u}_2 \right)  \tfrac12\, \eta_1^2\, \frac{\partial^2}{\partial z^2} \left( \frac{\partial^2 \Phi_1}{\partial t^2} + g\, \frac{\partial \Phi_1}{\partial z} \right) \\ &  \eta_1\, \frac{\partial^2}{\partial t\, \partial z} \left( \mathbf{u}_1^2 \right)  \tfrac12\, \mathbf{u}_1 \cdot \boldsymbol{\nabla} \left( \mathbf{u}_1^2 \right). \end{align}
(J3 )
In a similar fashion – from the dynamic boundary condition (H) – the conditions at z = 0 at the orders 1, 2 and 3 become:
 First order

\frac{\partial \Phi_1}{\partial t} + g\, \eta_1 = 0,
(K1 )
 Second order

\frac{\partial \Phi_2}{\partial t} + g\, \eta_2 =  \eta_1\, \frac{\partial^2 \Phi_1}{\partial t\, \partial z}  \tfrac12\, \left \mathbf{u}_1 \right^2,
(K2 )
 Third order

\begin{align} \frac{\partial \Phi_3}{\partial t} + g\, \eta_3 = &  \eta_1\, \frac{\partial^2 \Phi_2}{\partial t\, \partial z}  \eta_2\, \frac{\partial^2 \Phi_1}{\partial t\, \partial z}  \mathbf{u}_1 \cdot \mathbf{u}_2 \\ &  \tfrac12\, \eta_1^2\, \frac{\partial^3 \Phi_1}{\partial t\, \partial z^2}  \eta_1\, \frac{\partial}{\partial z} \left( \tfrac12\, \left \mathbf{u}_1 \right^2 \right). \end{align}
(K3 )
For the linear equations (A), (B) and (F) the perturbation technique results in a series of equations independent of the perturbation solutions at other orders:

\left. \begin{array}{rcl} \mathbf{u}_j &=& \boldsymbol{\nabla} \Phi_j, \\[1ex] \nabla^2 \Phi_j &=& 0, \\[1ex] \displaystyle \frac{\partial \Phi_j}{\partial n} &=& 0 \quad \text{ at } z=h, \end{array} \right\} \qquad \text{for all orders } j \in \mathbb{N}^+.
(L )
The above perturbation equations can be solved sequentially, i.e. starting with first order, thereafter continuing with the second order, third order, etc.
Application to progressive periodic waves of permanent form
The waves of permanent form propagate with a constant phase velocity (or celerity), denoted as c. If the steady wave motion is in the horizontal xdirection, the flow quantities η and u are not separately dependent on x and time t, but are functions of x − ct:^{[50]}
 \eta(x,t) = \eta(xct) \quad \text{and} \quad \mathbf{u}(x,z,t) = \mathbf{u}(xct,z).
Further the waves are periodic – and because they are also of permanent form – both in horizontal space x and in time t, with wavelength λ and period τ respectively. Note that Φ(x,z,t) itself is not necessary periodic due to the possibility of a constant (linear) drift in x and/or t:^{[51]}
 \Phi(x,z,t) = \beta x  \gamma t + \varphi(xct,z),
with φ(x,z,t) – as well as the derivatives ∂Φ/∂t and ∂Φ/∂x – being periodic. Here β is the mean flow velocity below trough level, and γ is related to the hydraulic head as observed in a frame of reference moving with the wave's phase velocity c (so the flow becomes steady in this reference frame).
In order to apply the Stokes expansion to progressive periodic waves, it is advantageous to describe them through Fourier series as a function of the wave phase θ(x,t):^{[43]}^{[51]}
 \theta = k x  \omega t = k \left( x  c t \right),
assuming waves propagating in the x–direction. Here k = 2π / λ is the wavenumber, ω = 2π / τ is the angular frequency and c = ω / k (= λ / τ) is the phase velocity.
Now, the free surface elevation η(x,t) of a periodic wave can be described as the Fourier series:^{[11]}^{[51]}
 \eta = \sum_{n=1}^{\infty} A_n\, \cos\, (n\theta).
Similarly, the corresponding expression for the velocity potential Φ(x,z,t) is:^{[51]}
 \Phi = \beta x  \gamma t + \sum_{n=1}^\infty B_n\, \biggl[ \cosh\, \left( nk\, (z+h) \right) \biggr]\, \sin\, (n\theta),
satisfying both the Laplace equation ∇^{2}Φ = 0 in the fluid interior, as well as the boundary condition ∂Φ/∂z = 0 at the bed z = −h.
For a given value of the wavenumber k, the parameters: A_{n}, B_{n} (with n = 1, 2, 3, ...), c, β and γ have yet to be determined. They all can be expanded as perturbation series in ε. Fenton (1990) provides these values for fifthorder Stokes' wave theory.
For progressive periodic waves, derivatives with respect to x and t of functions f(θ,z) of θ(x,t) can be expressed as derivatives with respect to θ:
 \frac{\partial f}{\partial x} = +k\, \frac{\partial f}{\partial \theta} \qquad \text{and} \qquad \frac{\partial f}{\partial t} = \omega\, \frac{\partial f}{\partial \theta}.
The important point for nonlinear waves – in contrast to linear Airy wave theory – is that the phase velocity c also depends on the wave amplitude a, besides its dependence on wavelength λ = 2π / k and mean depth h. Negligence of the dependence of c on wave amplitude results in the appearance of secular terms, in the higherorder contributions to the perturbationseries solution. Stokes (1847) already applied the required nonlinear correction to the phase speed c in order to prevent secular behaviour. A general approach to do so is now known as the Lindstedt–Poincaré method. Since the wavenumber k is given and thus fixed, the nonlinear behaviour of the phase velocity c = ω / k is brought into account by also expanding the angular frequency ω into a perturbation series:^{[9]}
 \omega = \omega_0 + \varepsilon\, \omega_1 + \varepsilon^2\, \omega_2 + \cdots.
Here ω_{0} will turn out to be related to the wavenumber k through the linear dispersion relation. However time derivatives, through ∂f/∂t = −ω ∂f/∂θ, now also give contributions – containing ω_{1}, ω_{2}, etc. – to the governing equations at higher orders in the perturbation series. By tuning ω_{1}, ω_{2}, etc., secular behaviour can be prevented. For surface gravity waves, it is found that ω_{1} = 0 and the first nonzero contribution to the dispersion relation comes from ω_{2} (see e.g. the subsection "Thirdorder dispersion relation" above).^{[9]}
Stokes' two definitions of wave celerity
For nonlinear surface waves there is, in general, ambiguity in splitting the total motion into a wave part and a mean part. As a consequence, there is some freedom in choosing the phase speed (celerity) of the wave. Stokes (1847) identified two logical definitions of phase speed, known as Stokes' first and second definition of wave celerity:^{[6]}^{[11]}^{[52]}
 Stokes' first definition of wave celerity has, for a pure wave motion, the mean value of the horizontal Eulerian flowvelocity Ū_{E} at any location below trough level equal to zero. Due to the irrotationality of potential flow, together with the horizontal sea bed and periodicity the mean horizontal velocity, the mean horizontal velocity is a constant between bed and trough level. So in Stokes first definition the wave is considered from a frame of reference moving with the mean horizontal velocity Ū_{E}. This is an advantageous approach when the mean Eulerian flow velocity Ū_{E} is known, e.g. from measurements.
 Stokes' second definition of wave celerity is for a frame of reference where the mean horizontal mass transport of the wave motion equal to zero. This is different from the first definition due to the mass transport in the splash zone, i.e. between the trough and crest level, in the wave propagation direction. This waveinduced mass transport is caused by the positive correlation between surface elevation and horizontal velocity. In the reference frame for Stokes' second definition, the waveinduced mass transport is compensated by an opposing undertow (so Ū_{E} < 0 for waves propagating in the positive xdirection). This is the logical definition for waves generated in a wave flume in the laboratory, or waves moving perpendicular towards a beach.
As pointed out by Michael E. McIntyre, the mean horizontal mass transport will be (near) zero for a wave group approaching into still water, with also in deep water the mass transport caused by the waves balanced by an opposite mass transport in a return flow (undertow).^{[53]} This is due to the fact that a large mean force will be needed to accelerate the body of water into which the wave group is propagating.
Notes
 ^ Figure 5 in: Susan BartschWinkler; David K. Lynch (1988), Catalog of worldwide tidal bore occurrences and characteristics (Circular 1022),
 ^ Chakrabarti, S.K. (2005), Handbook of Offshore Engineering, Elsevier, p. 235,
 ^ Grant, M.A. (1973), "Standing Stokes waves of maximum height", Journal of Fluid Mechanics 60 (3): 593–604,
 ^ Ochi, Michel K. (2003), Hurricanegenerated seas, Elsevier, p. 119,
 ^ Tayfun, M.A. (1980), "Narrowband nonlinear sea waves", Journal of Geophysical Research 85 (C3): 1548–1552,
 ^ ^{}a ^{b} ^{c} ^{d} ^{e} ^{f} ^{g} ^{h} ^{i} Dingemans, M.W. (1997), Water wave propagation over uneven bottoms, Advanced Series on Ocean Engineering 13, Singapore: World Scientific, pp. 171–184, §2.8,
 ^ Svendsen, I.A. (2006), Introduction to nearshore hydrodynamics, World Scientific, p. 370,
 ^ ^{}a ^{b} ^{c} Toba, Yoshiaki (2003), Ocean–atmosphere interactions, Springer, pp. 27–31,
 ^ ^{}a ^{b} ^{c} ^{d} Whitham (1974, pp. 471–476, §13.13)
 ^ ^{a} ^{b} Hedges, T.S. (1995), "Regions of validity of analytical wave theories", Proceedings of the Institution of Civil Engineers: Water Maritime and Energy 112 (2): 111–114,
 ^ ^{}a ^{b} ^{c} ^{d} ^{e} ^{f} Fenton (1990)
 ^ Stokes (1847)
 ^ Le Méhauté, B. (1976), An introduction to hydrodynamics and water waves, Springer,
 ^
 ^ Wilton (1914)
 ^ De (1955)
 ^ Fenton (1985), also (including corrections) in Fenton (1990)
 ^ ^{a} ^{b} Stokes (1880b)
 ^ ^{a} ^{b} Drennan, W.M.; Hui, W.H.; Tenti, G. (1992), "Accurate calculations of Stokes water waves of large amplitude", ZAMP Zeitschrift für angewandte Mathematik und Physik 43 (2): 367–384,
 ^ Buldakov, E.V.; Taylor, P.H.; Eatock Taylor, R. (2006), "New asymptotic description of nonlinear water waves in Lagrangian coordinates", Journal of Fluid Mechanics 562: 431–444,
 ^ Clamond, D. (2007), "On the Lagrangian description of steady surface gravity waves", Journal of Fluid Mechanics 589: 433–454,
 ^ Crapper (1957)
 ^ This figure is a remake and adaptation of Figure 1 in Schwartz & Fenton (1982)
 ^ ^{a} ^{b} Schwartz & Fenton (1982)
 ^
 ^ Hammack, J.L.; Henderson, D.M.; Segur, H. (2005), "Progressive waves with persistent twodimensional surface patterns in deep water", Journal of Fluid Mechanics 532: 1–52,
 ^ Craig, W.; Nicholls, D.P. (2002), "Traveling gravity water waves in two and three dimensions", European Journal of Mechanics – B/Fluids 21 (6): 615–641,
 ^ Debnath, L. (2005), Nonlinear partial differential equations for scientists and engineers, Birkhäuser, pp. 181 & 418–419,
 ^
 ^ Grant, Malcolm A. (1973), "The singularity at the crest of a finite amplitude progressive Stokes wave", Journal of Fluid Mechanics 59 (2): 257–262,
 ^
 ^ ^{}a ^{b} Rainey, R.C.T.;
 ^

^ ^{}a ^{b} For a review of the instability of Stokes waves see e.g.:
Craik, A.D.D. (1988), Wave interactions and fluid flows, Cambridge University Press, pp. 199–219,  ^
 ^
 ^ Concluded with a discussion by Klaus Hasselmann.
 ^ Lake, B.M.; Yuen, H.C.; Rungaldier, H.; Ferguson, W.E. (1977), "Nonlinear deepwater waves: theory and experiment. Part 2. Evolution of a continuous wave train", Journal of Fluid Mechanics 83 (1): 49–74,
 ^
 ^
 ^ McLean, J.W.; Ma, Y.C.; Martin, D.U.;
 ^ McLean, J.W. (1982), "Instabilities of finiteamplitude water waves", Journal of Fluid Mechanics 114: 315–330,
 ^ ^{}a ^{b} Dias & Kharif (1999)
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} ^{g} Phillips, O.M. (1980), Dynamics of the upper ocean (2nd ed.), Cambridge University Press, pp. 33–37,
 ^ ^{}a ^{b} Mei (1989, pp. 4–6)
 ^
 ^ ^{}a ^{b} ^{c} Mei (1989, pp. 607–608)

^ By nondimensionalization of the flow equations and boundary conditions, different regimes may be identified, depending on the scaling of the coordinates and flow quantities. In deep(er) water, the characteristic wavelength is the only length scale available. So, the horizontal and vertical coordinates are all nondimensionalized with the wavelength. This leads to Stokes wave theory. However, in shallow water, the water depth is the appropriate characteristic scale to make the vertical coordinate nondimensional, while the horizontal coordinates are scaled with the wavelength – resulting in the Boussinesq approximation. For a discussion, see:
• Beji, S. (1995), "Note on a nonlinearity parameter of surface waves", Coastal Engineering 25 (1–2): 81–85, ;
• Kirby, J.T. (1998), "Discussion of 'Note on a nonlinearity parameter of surface waves' by S. Beji", Coastal Engineering 34 (1–2): 163–168, and
• Beji, S. (1998), "Author's closure to J.T. Kirby's discussion 'Note on a nonlinearity parameter of surface waves'", Coastal Engineering 34 (1–2): 169–171,  ^ The wave physics are computed with the Rienecker & Fenton (R&F) The animations are made from the R&F results with a series of Matlab scripts and shell scripts.
 ^ Wehausen & Laitone (1960, pp. 653–667, §27)
 ^ ^{a} ^{b} ^{c} ^{d} Whitham (1974, pp. 553–556, §16.6)
 ^ Sarpkaya, Turgut; Isaacson, Michael (1981), Mechanics of wave forces on offshore structures, Van Nostrand Reinhold, p. 183,
 ^ McIntyre, M.E. (1981), "On the 'wave momentum' myth", Journal of Fluid Mechanics 106: 331–347,
References
By Sir George Gabriel Stokes
 Reprinted in: Stokes, G.G. (1880a), "On the theory of oscillatory waves", Mathematical and Physical Papers, Volume I, Cambridge University Press, pp. 197–229,
 Stokes, G.G. (1880b), "Supplement to a paper on the theory of oscillatory waves", Mathematical and Physical Papers, Volume I, Cambridge University Press, pp. 314–326,
Other historical references
 Crapper, G.D. (1957), "An exact solution for progressive capillary waves of arbitrary amplitude", Journal of Fluid Mechanics 2 (6): 532–540,
 De, S.C. (1955), "Contributions to the theory of Stokes waves", Mathematical Proceedings of the Cambridge Philosophical Society 51 (4): 713–736,

 Reprinted in: Strutt, John William (Lord Rayleigh) (1920), Scientific Papers 6 (1911–1919), Cambridge University Press, pp. 478–485, §419,
More recent (since 1960)
 Cokelet, E.D. (1977), "Steep gravity waves in water of arbitrary uniform depth", Philosophical Transactions of the Royal Society, A 286 (1335): 183–230,
 Craik, A.D.D. (2005), "George Gabriel Stokes on water wave theory", Annual Review of Fluid Mechanics 37: 23–42,
 Dias, F.; Kharif, C. (1999), "Nonlinear gravity and capillary–gravity waves", Annual Review of Fluid Mechanics 31: 301–346,

Fenton, J.D. (1985), "A fifthorder Stokes theory for steady waves", Journal of Waterway Port Coastal and Ocean Engineering 111 (2): 216–234,
 And in (including corrections):
 Fenton, J.D. (1990), "Nonlinear wave theories", in LeMéhauté, B.; Hanes, D.M., Ocean Engineering Science, The Sea 9A, Wiley Interscience, pp. 3–25,
 Schwartz, L.W. (1974), "Computer extension and analytic continuation of Stokes' expansion for gravity waves", Journal of Fluid Mechanics 62 (3): 553–578,
 Schwartz, L.W.; Fenton, J.D. (1982), "Strongly nonlinear waves", Annual Review of Fluid Mechanics 14: 39–60,

Williams, J.M. (1981), "Limiting gravity waves in water of ﬁnite depth", Philosophical Transactions of the Royal Society, Series A 302 (1466): 139–188,
and
External links
 Jun Zhang, Stokes waves applet, Texas A&M University, retrieved 20120809
