Photosynthesis

Photosynthesis

Schematic of photosynthesis in plants. The carbohydrates produced are stored in or used by the plant.
Overall equation for the type of photosynthesis that occurs in plants
Composite image showing the global distribution of photosynthesis, including both oceanic phytoplankton and terrestrial vegetation. Dark red and blue-green indicate regions of high photosynthetic activity in ocean and land respectively.

Photosynthesis is a process used by plants and other organisms to convert

  • A collection of photosynthesis pages for all levels from a renowned expert (Govindjee)
  • In depth, advanced treatment of photosynthesis, also from Govindjee
  • Science Aid: Photosynthesis Article appropriate for high school science
  • Metabolism, Cellular Respiration and Photosynthesis – The Virtual Library of Biochemistry and Cell Biology
  • Overall examination of Photosynthesis at an intermediate level
  • Overall Energetics of Photosynthesis
  • Photosynthesis Discovery Milestones – experiments and background
  • The source of oxygen produced by photosynthesis Interactive animation, a textbook tutorial
  • Jessica Marshall (2011-03-29). "First practical artificial leaf makes debut". Discovery News. 
  • Photosynthesis – Light Dependent & Light Independent Stages
  • Khan Academy, video introduction

External links

  • Gupta RS, Mukhtar T, Singh B (June 1999). "Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis". Mol. Microbiol. 32 (5): 893–906.  
  • Rutherford AW, Faller P (January 2003). "Photosystem II: evolutionary perspectives". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 358 (1429): 245–53.  

Papers

  • Bidlack JE, Stern KR, Jansky S (2003). Introductory plant biology. New York: McGraw-Hill.  
  • Blankenship RE (2014). Molecular Mechanisms of Photosynthesis (2nd ed.).  
  • Govindjee, Beatty JT, Gest H, Allen JF (2006). Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration 20. Berlin: Springer.  
  • Reece JB, et al. (2013). Campbell Biology.  

Books

Further reading

  1. ^ "photosynthesis".  
  2. ^ φῶς. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  3. ^ σύνθεσις. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  4. ^ a b Bryant DA, Frigaard NU (November 2006). "Prokaryotic photosynthesis and phototrophy illuminated". Trends Microbiol. 14 (11): 488–96.  
  5. ^ Reece J, Urry L, Cain M, Wasserman S, Minorsky P, Jackson R. Biology (International ed.). Upper Saddle River, NJ: Pearson Education. pp. 235, 244.  
  6. ^ Olson JM (May 2006). "Photosynthesis in the Archean era". Photosyn. Res. 88 (2): 109–17.  
  7. ^ Buick R (August 2008). "When did oxygenic photosynthesis evolve?". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363 (1504): 2731–43.  
  8. ^ Nealson KH, Conrad PG (December 1999). "Life: past, present and future". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 354 (1392): 1923–39.  
  9. ^ Whitmarsh J, Govindjee (1999). "The photosynthetic process". In Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee. Concepts in photobiology: photosynthesis and photomorphogenesis. Boston: Kluwer Academic Publishers. pp. 11–51.  
  10. ^ Steger U, Achterberg W, Blok K, Bode H, Frenz W, Gather C, Hanekamp G, Imboden D, Jahnke M, Kost M, Kurz R, Nutzinger HG, Ziesemer T (2005). Sustainable development and innovation in the energy sector. Berlin: Springer. p. 32.  
  11. ^ "World Consumption of Primary Energy by Energy Type and Selected Country Groups, 1980–2004" (XLS). Energy Information Administration. July 31, 2006. Retrieved 2007-01-20. 
  12. ^ Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (July 1998). "Primary production of the biosphere: integrating terrestrial and oceanic components". Science 281 (5374): 237–40.  
  13. ^ a b c "Photosynthesis". McGraw-Hill Encyclopedia of Science & Technology 13. New York: McGraw-Hill. 2007.  
  14. ^ Anaerobic Photosynthesis, Chemical & Engineering News, 86, 33, August 18, 2008, p. 36
  15. ^ Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT, Fisher JC, Stolz JF, Culbertson CW, Miller LG, Oremland RS (August 2008). "Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California". Science 321 (5891): 967–70.  
  16. ^ "Scientists discover unique microbe in California's largest lake". Retrieved 2009-07-20. 
  17. ^ Plants: Diversity and Evolution, page 14, Martin Ingrouille, Bill Eddie
  18. ^ Evolution of Photosynthesis
  19. ^ Tavano CL, Donohue TJ (December 2006). "Development of the bacterial photosynthetic apparatus". Curr. Opin. Microbiol. 9 (6): 625–31.  
  20. ^ a b Mullineaux CW (1999). "The thylakoid membranes of cyanobacteria: structure, dynamics and function". Australian Journal of Plant Physiology 26 (7): 671–677.  
  21. ^ Sener MK, Olsen JD, Hunter CN, Schulten K (October 2007). "Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle". Proc. Natl. Acad. Sci. U.S.A. 104 (40): 15723–8.  
  22. ^ Campbell NA, Williamson B, Heyden RJ (2006). Biology Exploring Life. Upper Saddle River, NJ: Pearson Prentice Hall.  
  23. ^ a b Raven PH, Evert RF, Eichhorn SE (2005). Biology of Plants, (7th ed.). New York: W.H. Freeman and Company Publishers. pp. 124–127.  
  24. ^ "Yachandra Group Home page". 
  25. ^ Pushkar Y, Yano J, Sauer K, Boussac A, Yachandra VK (February 2008). "Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting". Proc. Natl. Acad. Sci. U.S.A. 105 (6): 1879–84.  
  26. ^ a b Williams BP, Johnston IG, Covshoff S, Hibberd JM (September 2013). "Phenotypic landscape inference reveals multiple evolutionary paths to C₄ photosynthesis". eLife 2: e00961.  
  27. ^ L. Taiz, E. Zeiger (2006). Plant Physiology (4 ed.). Sinauer Associates.  
  28. ^ Monson RK, Sage RF (1999). "16". C₄ plant biology. Boston: Academic Press. pp. 551–580.  
  29. ^ Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K (April 2002). "Crassulacean acid metabolism: plastic, fantastic". J. Exp. Bot. 53 (369): 569–80.  
  30. ^ Badger, M. R.; Price, GD (2003). "CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution". Journal of Experimental Botany 54 (383): 609–22.  
  31. ^ Badger MR, Andrews JT, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998). -concentrating mechanisms in algae"2"The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO. Canadian Journal of Botany 76 (6): 1052–1071.  
  32. ^ Miyamoto K. "Chapter 1 – Biological energy production". Renewable biological systems for alternative sustainable energy production (FAO Agricultural Services Bulletin – 128). Food and Agriculture Organization of the United Nations. Retrieved 2009-01-04. 
  33. ^ Maxwell K, Johnson GN (April 2000). "Chlorophyll fluorescence--a practical guide". J. Exp. Bot. 51 (345): 659–68.  
  34. ^ Govindjee R. "What is Photosynthesis". Biology at Illinois. 
  35. ^ Palmer J (21 June 2013). "'"Plants 'seen doing quantum physics. BBC News. 
  36. ^ Lloyd S (10 March 2014). "Quantum Biology: Better Living Through Quantum Mechanics - The Nature of Reality". Nova: PBS Online, WGBH Boston. 
  37. ^ Hildner R, Brinks D, Nieder JB, Cogdell RJ, van Hulst NF (2013). "Quantum coherent energy transfer over varying pathways in single light-harvesting complexes". Science 340 (6139): 1448–51.  
  38. ^ Photosynthesis got a really early start, New Scientist, 2 October 2004
  39. ^ Revealing the dawn of photosynthesis, New Scientist, 19 August 2006
  40. ^ Venn AA, Loram JE, Douglas AE (2008). "Photosynthetic symbioses in animals". J. Exp. Bot. 59 (5): 1069–80.  
  41. ^ Rumpho ME, Summer EJ, Manhart JR (May 2000). "Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis". Plant Physiol. 123 (1): 29–38.  
  42. ^ Muscatine L, Greene RW (1973). "Chloroplasts and algae as symbionts in molluscs". Int. Rev. Cytol. International Review of Cytology 36: 137–69.  
  43. ^ Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa A, Manhart JR (November 2008). "Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica". Proc. Natl. Acad. Sci. U.S.A. 105 (46): 17867–71.  
  44. ^ Douglas SE (December 1998). "Plastid evolution: origins, diversity, trends". Curr. Opin. Genet. Dev. 8 (6): 655–61.  
  45. ^ Reyes-Prieto A, Weber AP, Bhattacharya D (2007). "The origin and establishment of the plastid in algae and plants". Annu. Rev. Genet. 41: 147–68.  
  46. ^ Raven JA, Allen JF (2003). "Genomics and chloroplast evolution: what did cyanobacteria do for plants?". Genome Biol. 4 (3): 209.  
  47. ^ Akiko Tomitani (April 2006). "The evolutionary diversification of cyanobacteria: Molecular–phylogenetic and paleontological perspectives". PNAS 103 (14): 5442–5447.  
  48. ^ "Cyanobacteria: Fossil Record". Ucmp.berkeley.edu. Retrieved 2010-08-26. 
  49. ^ Smith, Alison (2010). Plant biology. New York, NY: Garland Science. p. 5.  
  50. ^ Herrero A, Flores E (2008). The Cyanobacteria: Molecular Biology, Genomics and Evolution (1st ed.). Caister Academic Press.  
  51. ^ Plotkin M, Hod I, Zaban A, Boden SA, Bagnall DM, Galushko D, Bergman DJ (2010). "Solar energy harvesting in the epicuticle of the oriental hornet (Vespa orientalis)". Naturwissenschaften 97 (12): 1067–76.  
  52. ^  
  53. ^ Otto Warburg – Biography. Nobelprize.org (1970-08-01). Retrieved on 2011-11-03.
  54. ^ Gest, Howard (2002). "History of the word photosynthesis and evolution of its definition.". Photosynthesis Research 73 (1-3): 7–10.  

References

See also

The salvaging pathway for the products of RuBisCO oxygenase activity is more commonly known as photorespiration, since it is characterized by light-dependent oxygen consumption and the release of carbon dioxide.

2 glycolate + ATP → 3-phosphoglycerate + carbon dioxide + ADP + NH3
A highly simplified summary is:
  1. One product of oxygenase activity is phosphoglycolate (2 carbon) instead of 3-phosphoglycerate (3 carbon). Phosphoglycolate cannot be metabolized by the Calvin-Benson cycle and represents carbon lost from the cycle. A high oxygenase activity, therefore, drains the sugars that are required to recycle ribulose 5-bisphosphate and for the continuation of the Calvin-Benson cycle.
  2. Phosphoglycolate is quickly metabolized to glycolate that is toxic to a plant at a high concentration; it inhibits photosynthesis.
  3. Salvaging glycolate is an energetically expensive process that uses the glycolate pathway, and only 75% of the carbon is returned to the Calvin-Benson cycle as 3-phosphoglycerate. The reactions also produce ammonia (NH3), which is able to diffuse out of the plant, leading to a loss of nitrogen.

RuBisCO oxygenase activity is disadvantageous to plants for several reasons:

As carbon dioxide concentrations rise, the rate at which sugars are made by the light-independent reactions increases until limited by other factors. RuBisCO, the enzyme that captures carbon dioxide in the light-independent reactions, has a binding affinity for both carbon dioxide and oxygen. When the concentration of carbon dioxide is high, RuBisCO will fix carbon dioxide. However, if the carbon dioxide concentration is low, RuBisCO will bind oxygen instead of carbon dioxide. This process, called photorespiration, uses energy, but does not produce sugars.

Photorespiration

Carbon dioxide levels and photorespiration

These two experiments illustrate several important points: First, from research it is known that, in general, photochemical reactions are not affected by temperature. However, these experiments clearly show that temperature affects the rate of carbon assimilation, so there must be two sets of reactions in the full process of carbon assimilation. These are, of course, the light-dependent 'photochemical' stage and the light-independent, temperature-dependent stage. Second, Blackman's experiments illustrate the concept of limiting factors. Another limiting factor is the wavelength of light. Cyanobacteria, which reside several meters underwater, cannot receive the correct wavelengths required to cause photoinduced charge separation in conventional photosynthetic pigments. To combat this problem, a series of proteins with different pigments surround the reaction center. This unit is called a phycobilisome.

  • At constant temperature, the rate of carbon assimilation varies with irradiance, initially increasing as the irradiance increases. However, at higher irradiance, this relationship no longer holds and the rate of carbon assimilation reaches a plateau.
  • At constant irradiance, the rate of carbon assimilation increases as the temperature is increased over a limited range. This effect is seen only at high irradiance levels. At low irradiance, increasing the temperature has little influence on the rate of carbon assimilation.

In the early 20th century, Frederick Blackman and Gabrielle Matthaei investigated the effects of light intensity (irradiance) and temperature on the rate of carbon assimilation.

Light intensity (irradiance), wavelength and temperature

There are three main factors affecting photosynthesis and several corollary factors. The three main are:

The leaf is the primary site of photosynthesis in plants.

Factors

In 1893, Charles Reid Barnes proposed two terms, photosyntax and photosynthesis, for the biological process of synthesis of complex carbon compounds out of carbonic acid, in the presence of chlorophyll, under the influence of light. Over time, the term photosynthesis came into common usage as the term of choice. Later discovery of anoxygenic photosynthetic bacteria and photophosphorylation necessitated redefinition of the term.[54]

Development of the concept

Louis N.M. Duysens and Jan Amesz discovered that chlorophyll a will absorb one light, oxidize cytochrome f, chlorophyll a (and other pigments) will absorb another light, but will reduce this same oxidized cytochrome, stating the two light reactions are in series.

Otto Heinrich Warburg and Dean Burk discovered the I-quantum photosynthesis reaction that splits the CO2, activated by the respiration.[53]

Nobel Prize-winning scientist Rudolph A. Marcus was able to discover the function and significance of the electron transport chain.

Melvin Calvin and Andrew Benson, along with James Bassham, elucidated the path of carbon assimilation (the photosynthetic carbon reduction cycle) in plants. The carbon reduction cycle is known as the Calvin cycle, which ignores the contribution of Bassham and Benson. Many scientists refer to the cycle as the Calvin-Benson Cycle, Benson-Calvin, and some even call it the Calvin-Benson-Bassham (or CBB) Cycle.

Samuel Ruben and Martin Kamen used radioactive isotopes to determine that the oxygen liberated in photosynthesis came from the water.

where A is the electron acceptor. Therefore, in light, the electron acceptor is reduced and oxygen is evolved.

2 H2O + 2 A + (light, chloroplasts) → 2 AH2 + O2

Robert Hill thought that a complex of reactions consisting of an intermediate to cytochrome b6 (now a plastoquinone), another is from cytochrome f to a step in the carbohydrate-generating mechanisms. These are linked by plastoquinone, which does require energy to reduce cytochrome f for it is a sufficient reductant. Further experiments to prove that the oxygen developed during the photosynthesis of green plants came from water, were performed by Hill in 1937 and 1939. He showed that isolated chloroplasts give off oxygen in the presence of unnatural reducing agents like iron oxalate, ferricyanide or benzoquinone after exposure to light. The Hill reaction[52] is as follows:

Melvin Calvin works in his photosynthesis laboratory.

Robert Emerson discovered two light reactions by testing plant productivity using different wavelengths of light. With the red alone, the light reactions were suppressed. When blue and red were combined, the output was much more substantial. Thus, there were two photosystems, one absorbing up to 600 nm wavelengths, the other up to 700 nm. The former is known as PSII, the latter is PSI. PSI contains only chlorophyll a, PSII contains primarily chlorophyll a with most of the available chlorophyll b, among other pigment. These include phycobilins, which are the red and blue pigments of red and blue algae respectively, and fucoxanthol for brown algae and diatoms. The process is most productive when absorption of quanta are equal in both the PSII and PSI, assuring that input energy from the antenna complex is divided between the PSI and PSII system, which in turn powers the photochemistry.[13]

Cornelis Van Niel made key discoveries explaining the chemistry of photosynthesis. By studying purple sulfur bacteria and green bacteria he was the first scientist to demonstrate that photosynthesis is a light-dependent redox reaction, in which hydrogen reduces carbon dioxide.

In 1796, Jean Senebier, a Swiss pastor, botanist, and naturalist, demonstrated that green plants consume carbon dioxide and release oxygen under the influence of light. Soon afterward, Nicolas-Théodore de Saussure showed that the increase in mass of the plant as it grows could not be due only to uptake of CO2 but also to the incorporation of water. Thus, the basic reaction by which photosynthesis is used to produce food (such as glucose) was outlined.

In 1778, Jan Ingenhousz, court physician to the Austrian Empress, repeated Priestley's experiments. He discovered that it was the influence of sunlight on the plant that could cause it to revive a mouse in a matter of hours.

Joseph Priestley, a chemist and minister, discovered that, when he isolated a volume of air under an inverted jar, and burned a candle in it, the candle would burn out very quickly, much before it ran out of wax. He further discovered that a mouse could similarly "injure" air. He then showed that the air that had been "injured" by the candle and the mouse could be restored by a plant.

Jan van Helmont began the research of the process in the mid-17th century when he carefully measured the mass of the soil used by a plant and the mass of the plant as it grew. After noticing that the soil mass changed very little, he hypothesized that the mass of the growing plant must come from the water, the only substance he added to the potted plant. His hypothesis was partially accurate — much of the gained mass also comes from carbon dioxide as well as water. However, this was a signaling point to the idea that the bulk of a plant's biomass comes from the inputs of photosynthesis, not the soil itself.

Although some of the steps in photosynthesis are still not completely understood, the overall photosynthetic equation has been known since the 19th century.

Discovery

The Oriental hornet (Vespa orientalis) converts sunlight into electric power using a pigment called xanthopterin. This is the first evidence of a member of the animal kingdom engaging in photosynthesis.[51]

The biochemical capacity to use water as the source for electrons in photosynthesis evolved once, in a common ancestor of extant cyanobacteria. The geological record indicates that this transforming event took place early in Earth's history, at least 2450–2320 million years ago (Ma), and, it is speculated, much earlier.[47][48] Because the Earth's atmosphere contained almost no oxygen during the estimated development of photosynthesis, many scientists believe that the first photosynthetic cyanobacteria did not generate oxygen.[49] Available evidence from geobiological studies of Archean (>2500 Ma) sedimentary rocks indicates that life existed 3500 Ma, but the question of when oxygenic photosynthesis evolved is still unanswered. A clear paleontological window on cyanobacterial evolution opened about 2000 Ma, revealing an already-diverse biota of blue-greens. Cyanobacteria remained principal primary producers throughout the Proterozoic Eon (2500–543 Ma), in part because the redox structure of the oceans favored photoautotrophs capable of nitrogen fixation. Green algae joined blue-greens as major primary producers on continental shelves near the end of the Proterozoic, but only with the Mesozoic (251–65 Ma) radiations of dinoflagellates, coccolithophorids, and diatoms did primary production in marine shelf waters take modern form. Cyanobacteria remain critical to marine ecosystems as primary producers in oceanic gyres, as agents of biological nitrogen fixation, and, in modified form, as the plastids of marine algae.[50]

Cyanobacteria and the evolution of photosynthesis

An even closer form of symbiosis may explain the origin of chloroplasts. Chloroplasts have many similarities with photosynthetic bacteria, including a circular chromosome, prokaryotic-type ribosomes, and similar proteins in the photosynthetic reaction center.[44][45] The endosymbiotic theory suggests that photosynthetic bacteria were acquired (by endocytosis) by early eukaryotic cells to form the first plant cells. Therefore, chloroplasts may be photosynthetic bacteria that adapted to life inside plant cells. Like mitochondria, chloroplasts still possess their own DNA, separate from the nuclear DNA of their plant host cells and the genes in this chloroplast DNA resemble those in cyanobacteria.[46] DNA in chloroplasts codes for redox proteins such as photosynthetic reaction centers. The CoRR Hypothesis proposes that this Co-location is required for Redox Regulation.

Several groups of animals have formed symbiotic relationships with photosynthetic algae. These are most common in corals, sponges and sea anemones. It is presumed that this is due to the particularly simple body plans and large surface areas of these animals compared to their volumes.[40] In addition, a few marine mollusks Elysia viridis and Elysia chlorotica also maintain a symbiotic relationship with chloroplasts they capture from the algae in their diet and then store in their bodies. This allows the mollusks to survive solely by photosynthesis for several months at a time.[41][42] Some of the genes from the plant cell nucleus have even been transferred to the slugs, so that the chloroplasts can be supplied with proteins that they need to survive.[43]

Symbiosis and the origin of chloroplasts

The main source of oxygen in the atmosphere is oxygenic photosynthesis, and its first appearance is sometimes referred to as the oxygen catastrophe. Geological evidence suggests that oxygenic photosynthesis, such as that in cyanobacteria, became important during the Paleoproterozoic era around 2 billion years ago. Modern photosynthesis in plants and most photosynthetic prokaryotes is oxygenic. Oxygenic photosynthesis uses water as an electron donor, which is oxidized to molecular oxygen (O
2
) in the photosynthetic reaction center.

[39][38] Fossils of what are thought to be

Early photosynthetic systems, such as those from reduced at that time.

Plant cells with visible chloroplasts (from a moss, Plagiomnium affine)

Evolution

A phenomenon known as quantum walk increases the efficiency of the energy transport of light significantly. In the photosynthetic cell of an algae, bacterium, or plant, there are light-sensitive molecules called chromophores arranged in an antenna-shaped structure named a photocomplex. When a photon is absorbed by a chromophore, it is converted into a quasiparticle referred to as an exciton, which jumps from chromophore to chromophore towards the reaction center of the photocomplex, a collection of molecules that traps its energy in a chemical form that makes it accessible for the cell's metabolism. The particle's wave properties enable it to cover a wider area and try out several possible paths simultaneously, allowing it to instantaneously "choose" the most efficient route, where it will have the highest probability of arriving at its destination in the minimum possible time. Because it takes place at temperatures far higher than quantum phenomena usually occur in, quantum walking is only possible over very short distances, due to obstacles in the form of destructive interference that will come into play. These cause the particle to lose its wave properties for an instant before it regains them once again after it is freed from its locked position through a classic "hop". The distance towards the center is therefore covered in a series of conventional hops and quantum walks.[35][36][37]

Photosynthesis measurement systems are not designed to directly measure the amount of light absorbed by the leaf. Nevertheless, the light response curves that systems like the LCpro-SD produce, do allow comparisons in photosynthetic efficiency between plants.

Actual plants' photosynthetic efficiency varies with the frequency of the light being converted, light intensity, temperature and proportion of carbon dioxide in the atmosphere, and can vary from 0.1% to 8%.[34] By comparison, solar panels convert light into electric energy at an efficiency of approximately 6–20% for mass-produced panels, and above 40% in laboratory devices.

Plants usually convert light into chemical energy with a photosynthetic efficiency of 3–6%.[32] Absorbed light that is unconverted is dissipated primarily as heat, with a small fraction (1-2%) [33] re-emitted as chlorophyll fluorescence at longer (redder) wavelengths.

Measuring the photosynthetic efficiency of wheat in the field using an LCpro-SD

Efficiency

Stage Description Time scale
1 Energy transfer in antenna chlorophyll (thylakoid membranes) femtosecond to picosecond
2 Transfer of electrons in photochemical reactions (thylakoid membranes) picosecond to nanosecond
3 Electron transport chain and ATP synthesis (thylakoid membranes) microsecond to millisecond
4 Carbon fixation and export of stable products millisecond to second
[13]The overall process of photosynthesis takes place in four stages:

Order and kinetics

Cyanobacteria possess carboxysomes, which increase the concentration of CO
2
around RuBisCO to increase the rate of photosynthesis. An enzyme, carbonic anhydrase, located within the carboxysome releases CO2 from the dissolved hydrocarbonate ions (HCO3). Before the CO2 diffuses out it is quickly sponged up by RuBisCO, which is concentrated within the carboxysomes. HCO3 ions are made from CO2 outside the cell by another carbonic anhydrase and are actively pumped into the cell by a membrane protein. They cannot cross the membrane as they are charged, and within the cytosol they turn back into CO2 very slowly without the help of carbonic anhydrase. This causes the HCO3 ions to accumulate within the cell from where they diffuse into the carboxysomes.[30] Pyrenoids in algae and hornworts also act to concentrate CO
2
around rubisco.[31]

In water

Xerophytes, such as cacti and most succulents, also use PEP carboxylase to capture carbon dioxide in a process called Crassulacean acid metabolism (CAM). In contrast to C4 metabolism, which physically separates the CO
2
fixation to PEP from the Calvin cycle, CAM temporally separates these two processes. CAM plants have a different leaf anatomy from C3 plants, and fix the CO
2
at night, when their stomata are open. CAM plants store the CO
2
mostly in the form of malic acid via carboxylation of phosphoenolpyruvate to oxaloacetate, which is then reduced to malate. Decarboxylation of malate during the day releases CO
2
inside the leaves, thus allowing carbon fixation to 3-phosphoglycerate by RuBisCO. Sixteen thousand species of plants use CAM.[29]

oxaloacetic acid. Oxaloacetic acid or malate synthesized by this process is then translocated to specialized bundle sheath cells where the enzyme RuBisCO and other Calvin cycle enzymes are located, and where CO
2
released by decarboxylation of the four-carbon acids is then fixed by RuBisCO activity to the three-carbon sugar 3-phosphoglyceric acids. The physical separation of RuBisCO from the oxygen-generating light reactions reduces photorespiration and increases CO
2
fixation and, thus, plants3C because the primary carboxylation reaction, catalyzed by RuBisCO, produces the three-carbon sugar 3-phosphoglyceric acids directly in the Calvin-Benson cycle. Over 90% of plants use C3 carbon fixation, compared to 3% that use C4 carbon fixation.;[28] however, the fact that C4 has evolved in over 60 plant lineages makes it a striking example of convergent evolution.[26]

In hot and dry conditions, plants close their stomata to prevent the loss of water. Under these conditions, CO
2
will decrease, and oxygen gas, produced by the light reactions of photosynthesis, will decrease in the stem, not leaves, causing an increase of photorespiration by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and decrease in carbon fixation. Some plants have evolved mechanisms to increase the CO
2
concentration in the leaves under these conditions.[26]

Overview of C4 carbon fixation

On land

Carbon concentrating mechanisms

The fixation or reduction of carbon dioxide is a process in which carbon dioxide combines with a five-carbon sugar, ribulose 1,5-bisphosphate (RuBP), to yield two molecules of a three-carbon compound, glycerate 3-phosphate (GP), also known as 3-phosphoglycerate (PGA). GP, in the presence of ATP and NADPH from the light-dependent stages, is reduced to glyceraldehyde 3-phosphate (G3P). This product is also referred to as 3-phosphoglyceraldehyde (PGAL) or even as triose phosphate. Triose is a 3-carbon sugar (see carbohydrates). Most (5 out of 6 molecules) of the G3P produced is used to regenerate RuBP so the process can continue (see Calvin-Benson cycle). The 1 out of 6 molecules of the triose phosphates not "recycled" often condense to form hexose phosphates, which ultimately yield sucrose, starch and cellulose. The sugars produced during carbon metabolism yield carbon skeletons that can be used for other metabolic reactions like the production of amino acids and lipids.

To be more specific, carbon fixation produces an intermediate product, which is then converted to the final carbohydrate products. The carbon skeletons produced by photosynthesis are then variously used to form other organic compounds, such as the building material cellulose, as precursors for lipid and amino acid biosynthesis, or as a fuel in cellular respiration. The latter occurs not only in plants but also in animals when the energy from plants gets passed through a food chain.

Overview of the Calvin cycle and carbon fixation
3 CO2 + 9 ATP + 6 NADPH + 6 H+ → C3H6O3-phosphate + 9 ADP + 8 Pi + 6 NADP+ + 3 H2O

In the light-independent (or "dark") reactions, the enzyme RuBisCO captures CO2 from the atmosphere and in a process that requires the newly formed NADPH, called the Calvin-Benson Cycle, releases three-carbon sugars, which are later combined to form sucrose and starch. The overall equation for the light-independent reactions in green plants is:[23]:128

Calvin cycle

Light-independent reactions

[25][24] The NADPH is the main

Water photolysis

In plants, light-dependent reactions occur in the thylakoid membranes of the chloroplasts and use light energy to synthesize ATP and NADPH. The light-dependent reaction has two forms: cyclic and non-cyclic. In the non-cyclic reaction, the photons are captured in the light-harvesting antenna complexes of photosystem II by chlorophyll and other accessory pigments (see diagram at right). When a chlorophyll molecule at the core of the photosystem II reaction center obtains sufficient excitation energy from the adjacent antenna pigments, an electron is transferred to the primary electron-acceptor molecule, pheophytin, through a process called photoinduced charge separation. These electrons are shuttled through an electron transport chain, the so-called Z-scheme shown in the diagram, that initially functions to generate a chemiosmotic potential across the membrane. An ATP synthase enzyme uses the chemiosmotic potential to make ATP during photophosphorylation, whereas NADPH is a product of the terminal redox reaction in the Z-scheme. The electron enters a chlorophyll molecule in Photosystem I. The electron is excited due to the light absorbed by the photosystem. A second electron carrier accepts the electron, which again is passed down lowering energies of electron acceptors. The energy created by the electron acceptors is used to move hydrogen ions across the thylakoid membrane into the lumen. The electron is used to reduce the co-enzyme NADP, which has functions in the light-independent reaction. The cyclic reaction is similar to that of the non-cyclic, but differs in the form that it generates only ATP, and no reduced NADP (NADPH) is created. The cyclic reaction takes place only at photosystem I. Once the electron is displaced from the photosystem, the electron is passed down the electron acceptor molecules and returns to photosystem I, from where it was emitted, hence the name cyclic reaction.

The "Z scheme"

Z scheme

Not all wavelengths of light can support photosynthesis. The photosynthetic action spectrum depends on the type of accessory pigments present. For example, in green plants, the action spectrum resembles the absorption spectrum for chlorophylls and carotenoids with peaks for violet-blue and red light. In red algae, the action spectrum overlaps with the absorption spectrum of phycobilins for red blue-green light, which allows these algae to grow in deeper waters that filter out the longer wavelengths used by green plants. The non-absorbed part of the light spectrum is what gives photosynthetic organisms their color (e.g., green plants, red algae, purple bacteria) and is the least effective for photosynthesis in the respective organisms.

2 H2O + 2 NADP+ + 3 ADP + 3 Pi + light → 2 NADPH + 2 H+ + 3 ATP + O2

In the light reactions, one molecule of the pigment chlorophyll absorbs one photon and loses one electron. This electron is passed to a modified form of chlorophyll called pheophytin, which passes the electron to a quinone molecule, allowing the start of a flow of electrons down an electron transport chain that leads to the ultimate reduction of NADP to NADPH. In addition, this creates a proton gradient across the chloroplast membrane; its dissipation is used by ATP synthase for the concomitant synthesis of ATP. The chlorophyll molecule regains the lost electron from a water molecule through a process called photolysis, which releases a dioxygen (O2) molecule. The overall equation for the light-dependent reactions under the conditions of non-cyclic electron flow in green plants is:[23]

Light-dependent reactions of photosynthesis at the thylakoid membrane

Light reactions

Although all cells in the green parts of a plant have chloroplasts, most of the energy is captured in the mesophyll, can contain between 450,000 and 800,000 chloroplasts for every square millimeter of leaf. The surface of the leaf is uniformly coated with a water-resistant waxy cuticle that protects the leaf from excessive evaporation of water and decreases the absorption of ultraviolet or blue light to reduce heating. The transparent epidermis layer allows light to pass through to the palisade mesophyll cells where most of the photosynthesis takes place.

These pigments are embedded in plants and algae in special antenna-proteins. In such proteins all the pigments are ordered to work well together. Such a protein is also called a light-harvesting complex.

Plants absorb light primarily using the pigment chlorophyll, which is the reason that most plants have a green color. Besides chlorophyll, plants also use pigments such as carotenes and xanthophylls.[22] Algae also use chlorophyll, but various other pigments are present as phycocyanin, carotenes, and xanthophylls in green algae, phycoerythrin in red algae (rhodophytes) and fucoxanthin in brown algae and diatoms resulting in a wide variety of colors.

In plants and algae, photosynthesis takes place in chloroplasts. A typical plant cell contains about 10 to 100 chloroplasts. The chloroplast is enclosed by a membrane. This membrane is composed of a phospholipid inner membrane, a phospholipid outer membrane, and an intermembrane space between them. Within the membrane is an aqueous fluid called the stroma. The stroma contains stacks (grana) of thylakoids, which are the site of photosynthesis. The thylakoids are flattened disks, bounded by a membrane with a lumen or thylakoid space within it. The site of photosynthesis is the thylakoid membrane, which contains integral and peripheral membrane protein complexes, including the pigments that absorb light energy, which form the photosystems.

In photosynthetic bacteria, the proteins that gather light for photosynthesis are embedded within cell membranes, which is the simplest configuration these proteins are arranged.[19] However, this membrane may be tightly folded into cylindrical sheets called thylakoids,[20] or bunched up into round vesicles called intracytoplasmic membranes.[21] These structures can fill most of the interior of a cell, giving the membrane a very large surface area and therefore increasing the amount of light that the bacteria can absorb.[20]

Chloroplast ultrastructure:
1. outer membrane
2. intermembrane space
3. inner membrane (1+2+3: envelope)
4. stroma (aqueous fluid)
5. thylakoid lumen (inside of thylakoid)
6. thylakoid membrane
7. granum (stack of thylakoids)
8. thylakoid (lamella)
9. starch
10. ribosome
11. plastidial DNA
12. plastoglobule (drop of lipids)

Photosynthetic membranes and organelles

Archaeobacteria use a simpler method using a pigment similar to the pigments used for vision. The archaearhodopsin changes its configuration in response to sunlight, acting as a proton pump. This produces a proton gradient more directly which is then converted to chemical energy. The process does not involve carbon dioxide fixation and does not release oxygen. It seems to have evolved separately.[17][18]

Most organisms that utilize photosynthesis to produce oxygen use visible light to do so, although at least three use shortwave infrared or, more specifically, far-red radiation.[16]

Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the energy-storage molecules ATP and NADPH. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide.

CO2 + (AsO33–) + photons → (AsO43–) + CO[15]
carbon dioxide + arsenite + light energy → arsenate + carbon monoxide (used to build other compounds in subsequent reactions)

Other processes substitute other compounds (such as arsenite) for water in the electron-supply role; for example some microbes use sunlight to oxidize arsenite to arsenate:[14] The equation for this reaction is:

2n CO2 + 2n H2O + photons2(CH2O)n + 2n O2
carbon dioxide + water + light energy → carbohydrate + oxygen

Often 2n water molecules are cancelled on both sides, yielding:

2n CO2 + 4n H2O + photons2(CH2O)n + 2n O2 + 2n H2O
carbon dioxide + water + light energy → carbohydrate + oxygen + water

In oxygenic photosynthesis water is the electron donor and, since its hydrolysis releases oxygen, the equation for this process is:

Carbon dioxide + electron donor + light energy → carbohydrate + oxidized electron donor

2n CO2 + 2n DH2 + photons2(CH2O)n + 2n DO

The general equation for photosynthesis is therefore:

Carbon dioxide is converted into sugars in a process called metabolism. However, the two processes take place through a different sequence of chemical reactions and in different cellular compartments.

Photosynthetic organisms are anoxygenic photosynthesis, which consumes carbon dioxide but does not release oxygen.

Photosynthesis changes sunlight into chemical energy, splits water to liberate O2, and fixes CO2 into sugar.

Overview

Contents

  • Overview 1
  • Photosynthetic membranes and organelles 2
  • Light reactions 3
    • Z scheme 3.1
    • Water photolysis 3.2
  • Light-independent reactions 4
    • Calvin cycle 4.1
    • Carbon concentrating mechanisms 4.2
      • On land 4.2.1
      • In water 4.2.2
  • Order and kinetics 5
  • Efficiency 6
  • Evolution 7
    • Symbiosis and the origin of chloroplasts 7.1
    • Cyanobacteria and the evolution of photosynthesis 7.2
  • Discovery 8
    • Development of the concept 8.1
  • Factors 9
    • Light intensity (irradiance), wavelength and temperature 9.1
    • Carbon dioxide levels and photorespiration 9.2
  • See also 10
  • References 11
  • Further reading 12
    • Books 12.1
    • Papers 12.2
  • External links 13

The first photosynthetic organisms probably biomass per year.[12][13]

In plants, algae and cyanobacteria, sugars are produced by a subsequent sequence of light-independent reactions called the ribulose bisphosphate (RuBP).[5] Using the ATP and NADPH produced by the light-dependent reactions, the resulting compounds are then reduced and removed to form further carbohydrates such as glucose.

Although photosynthesis is performed differently by different species, the process always begins when energy from light is absorbed by chloroplasts, which are most abundant in leaf cells, while in bacteria they are embedded in the plasma membrane. In these light-dependent reactions, some energy is used to strip electrons from suitable substances such as water, producing oxygen gas. Furthermore, two further compounds are generated: reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP), the "energy currency" of cells.

[4]