Nautilus-X

Nautilus-X

Nautilus-X
Nautilus-X spacecraft
Operator NASA
Applications Multi mission manned spacecraft[1]
Production
Status Concept

Nautilus-X (Non-Atmospheric Universal Transport Intended for Lengthy United States Exploration) is a multi-mission space exploration vehicle concept developed by the Technology Applications Assessment Team of NASA.

The spacecraft was designed for long duration (one to twenty-four months) exo-atmospheric space journeys for a six-person crew. In order to limit the effects of microgravity on human health, the spacecraft would be equipped with a centrifuge.

The spacecraft itself is proposed to be relatively cheap by manned spaceflight standards[2] as it is projected to only cost US$3.7 billion. In addition, it may only need 64 months of work.[3][4]

Contents

  • Objectives 1
  • Description 2
    • Design 2.1
    • Technologies 2.2
    • Attributes 2.3
  • Status as of 2011 3
    • ISS centrifuge demonstration 3.1
  • See also 4
  • References 5
  • External links 6

Objectives

The original goal of Nautilus-X is to be a stopover to long term missions for the Moon or Mars. To ease route planning of the whole mission, the station would be placed at the Lagrange point L1 or L2 of the Moon or Mars, depending on which location is to be visited.

It would also serve in case of emergency station and hospital for current mission crews.[1][3]

Other objectives include:

  • Support long term mission for 6 people
  • Self-sustainable and self-powered for entire mission operation (1–24 months)
  • Capable of space journeys and self-reliant
  • Support manned celestial body descent and return
  • Support external scientific payloads
  • Fully space only vehicle (no atmosphere entering capability)
  • Design a multipurpose crew vehicle which meets the requirement of NASA Authorization Act of 2010

Description

Design

Nautilus-X Main module dimensions

The spacecraft would be composed of a 6.5 by 14 metre main corridor, a rotating habitable centrifuge, inflatable modules for logistical stores and crew use, solar power arrays, and a reconfigurable thrust structure.

The spacecraft has a modular design, enabling it to accommodate any of a number of mission specific propulsion modules, manipulator arms, docking port for an [5] The spacecraft would also have an industrial slide-out airlock unit and a command, control and observation deck.

On the other end of the docking port is the spacecraft's centrifuge which is equipped with an external dynamic ring-flywheel. Behind the centrifuge are water and slush hydrogen tanks, which could mitigate the dangers of cosmic radiation for the crew, to a certain degree.[2] In the aft of the craft are the communication and propulsion systems.

The standard version of Nautilus-X has only three inflatable modules. The Extended Duration Explorer version of Nautilus-X has several more, plus docking bays for science payloads and away-mission vehicles.
Nautilus-X Extended duration explorer
Nautilus-X Extended duration explorer - frontview

Technologies

Nautilus-X ISS demonstrator

In order to deploy this unusually big spacecraft as easily as possible, it would consist of a variety of rigid and inflatable modules and solar dynamic arrays. The expandable modules are based on the technology used by the inflatable living quarters proposed by [5] which has continued the development of inflatable modules initially designed and developed by NASA.[6]

Attributes

  • Robust Environmental Control and Life Support and communication suite
  • Large storage volumes (for food, mechanical parts or medical supplies)
  • Real-time visual command & observe capability for crew
  • Low crew irradiation
  • Semi-autonomous integration of multiple mission specific propulsion units

Status as of 2011

ISS centrifuge demonstration

ISS demo annotated

In order to assess and characterize influences and effects of the centrifuge relative to human reactions, mechanical dynamic responses and influences, the demonstration of a similar centrifuge first would be tested on the ISS. This demonstrator also utilizes Hoberman sphere inflatable and expandable structures.

If produced, this centrifuge will be the first in-space demonstration of sufficient scale for artificial partial-g effects.[1] The demonstrator would be sent using a single Delta IV or Atlas V launcher. The full cost of such a demonstrator would be between US$83 million and US$143 million. It could be operational in less than 39 months after start.

The dimension of the demonstrator is under study, but two proposed diameters are 30 ft (9.1 m) and 40 ft (12 m). The following table shows the partial-g gravity created by the centrifuge depending on its rotations per minute.
RPM 30 ft (9.1 m) 40 ft (12 m)
4 0.08 0.11
5 0.13 0.17
6 0.18 0.25
7 0.25 0.33
8 0.33 0.44
9 0.41 0.55
10 0.51 0.69

A kick motor (similar to the Hughes 376 spin-stabilizers used on ComSats) would be used to get the centrifuge to start and maintain the centrifuge's rotations. It will be designed to become a sleep module for the ISS crew.[1]

See also

References

  1. ^ a b c d Mark Holderman and Edward Henderson of  
  2. ^ a b TopSpacer on hobbyspace.com (28 January 2011). "NASA NAUTILUS-X: multi-mission exploration vehicle includes centrifuge, which would be tested at ISS". Retrieved 29 March 2011. 
  3. ^ a b Max Eddy of Geekosystem.com (14 February 2011). "Nautilus-X spaceship could take us to Mars and beyond - Geekosystem". Retrieved 29 March 2011. 
  4. ^ Boyle, Rebecca (2011-02-14). "New NASA Designs for a Reusable Manned Deep-Space Craft, Nautilus-X". Popular Science. Retrieved 2011-02-15. [as of 2011] Construction would take at least five years and require two or three rocket launches. It would cost about $3.7 billion. 
  5. ^ a b John Messina (15 February 2011). "NASA's Nautilus-X: Reusage deep manned spacecraft". Retrieved 29 March 2011. 
  6. ^ Kim Dismukes (curator) (2003-06-27). "TransHab Concept". NASA.gov. Retrieved 2007-06-10. 

External links

  • Hoberman-Sphere expandable structures
  • NAUTILUS-X: Multi-Mission Space Exploration Vehicle, Mark L. Holderman, Future in Space Operations (FISO) Colloquium, 2011-01-26.
  • Nautilus X MMSEV Is More Outside-the-Box Space Thinking from NASA
  • NASA animation of NAUTILUS-X in space
  • New NASA Designs for a Reusable Manned Deep-Space Craft, Nautilus-X Popular Science, 2011-02-14.