Species (4):
[Source: WoRMS]


Lithotrya :
The Moon's cosmic ray shadow, as seen in secondary muons generated by cosmic rays in the atmosphere, and detected 700 meters below ground, at the Soudan II detector
Composition Elementary particle
Statistics Fermionic
Generation Second
Interactions Gravity, Electromagnetic,
Symbol μ
Antiparticle Antimuon (μ+)
Discovered Carl D. Anderson, Seth Neddermeyer (1936)
Mass 105.6583715(35) MeV/c2[1]
Mean lifetime 2.1969811(22)×10−6 s[1]
Electric charge −1 e
Color charge None
Spin 12

The muon (; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with unitary negative electric charge of −1 and a spin of 12, but with a much greater mass (105.7 MeV/c2). It is classified as a lepton, together with the electron (mass 0.511 MeV/c2), the tau (mass 1777.8 MeV/c2), and the three neutrinos. As is the case with other leptons, the muon is not believed to have any sub-structure; namely, it is not thought to be composed of any simpler particles.

The muon is an unstable subatomic particle with a mean lifetime of 2.2 µs. Among all known unstable subatomic particles, only the neutron and some atomic nuclei have a longer decay lifetime; others decay significantly faster. The decay of the muon (as well as of the neutron, the longest-lived unstable baryon), is mediated by the weak interaction exclusively. Muon decay always produces at least three particles, which must include an electron of the same charge as the muon and two neutrinos of different types.

Like all elementary particles, the muon has a corresponding antiparticle of opposite charge (+1) but equal mass and spin: the antimuon (also called a positive muon). Muons are denoted by μ and antimuons by μ+. Muons were previously called mu me==Taxonavigation== Species (4):
[Source: WoRMS]


Lithotrya :