ATP synthase A chain
Symbol ATP-synt_A
Pfam PF00119
InterPro IPR000568
SCOP 1c17
OPM superfamily 5
OPM protein 1c17
ATP synthase F0 subunit 6
Symbols  ; ATPase6; MTATP6
External IDs GeneCards:
EC number
Species Human Mouse
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a
Location (UCSC)
PubMed search

ATP synthase F0 subunit 6 (or subunit/chain A) (human mitochondrial gene name ATP6) is a subunit of F0 complex of transmembrane F-type ATP synthase.[1]


This subunit is a key component of the proton channel, and may play a direct role in the translocation of protons across the membrane. Catalysis in the F1 complex depends upon the rotation of the central stalk and F0 c-ring, which in turn is driven by the flux of protons through the membrane via the interface between the F0 c-ring and subunit A. The peripheral stalk links subunit A to the external surface of the F1 domain, and is thought to act as a stator to counter the tendency of subunit A and the F1alpha(3)beta(3) catalytic portion to rotate with the central rotary element.[2]

3D structure of E. coli homologue of this subunit was modelled based on electron microscopy data (chain M of PDB 1c17). It forms a transmembrane 4-α-bundle.

Clinical significance

ATP6 is a gene associated with neuropathy, ataxia, and retinitis pigmentosa.[3]


  1. ^ Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (April 1981). "Sequence and organization of the human mitochondrial genome". Nature 290 (5806): 457–65. PMID 7219534. doi:10.1038/290457a0. 
  2. ^ Walker JE, Runswick MJ, Neuhaus D, Montgomery MG, Carbajo RJ, Kellas FA (2005). "Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit". J. Mol. Biol. 351 (4): 824–838. PMID 16045926. doi:10.1016/j.jmb.2005.06.012. 
  3. ^ Baracca A, Sgarbi G, Mattiazzi M, Casalena G, Pagnotta E, Valentino ML, Moggio M, Lenaz G, Carelli V, Solaini G (July 2007). "Biochemical phenotypes associated with the mitochondrial ATP6 gene mutations at nt8993". Biochim. Biophys. Acta 1767 (7): 913–9. PMID 17568559. doi:10.1016/j.bbabio.2007.05.005. 

Further reading

  • Torroni A, Achilli A, Macaulay V, et al. (2006). "Harvesting the fruit of the human mtDNA tree.". Trends Genet. 22 (6): 339–45. PMID 16678300. doi:10.1016/j.tig.2006.04.001. 
  • Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2001). "Mitochondrial genome variation and the origin of modern humans.". Nature 408 (6813): 708–13. PMID 11130070. doi:10.1038/35047064. 
  • Manfredi G, Fu J, Ojaimi J, et al. (2002). "Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus.". Nat. Genet. 30 (4): 394–9. PMID 11925565. doi:10.1038/ng851. 
  • Torigoe T, Izumi H, Ishiguchi H, et al. (2002). "Enhanced expression of the human vacuolar H+-ATPase c subunit gene (ATP6L) in response to anticancer agents.". J. Biol. Chem. 277 (39): 36534–43. PMID 12133827. doi:10.1074/jbc.M202605200. 
  • Mishmar D, Ruiz-Pesini E, Golik P, et al. (2003). "Natural selection shaped regional mtDNA variation in humans.". Proc. Natl. Acad. Sci. U.S.A. 100 (1): 171–6. PMC 140917. PMID 12509511. doi:10.1073/pnas.0136972100. 
  • Ingman M, Gyllensten U (2003). "Mitochondrial genome variation and evolutionary history of Australian and New Guinean aborigines.". Genome Res. 13 (7): 1600–6. PMC 403733. PMID 12840039. doi:10.1101/gr.686603. 
  • Kong QP, Yao YG, Sun C, et al. (2003). "Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences.". Am. J. Hum. Genet. 73 (3): 671–6. PMC 1180693. PMID 12870132. doi:10.1086/377718. 
  • Temperley RJ, Seneca SH, Tonska K, et al. (2004). "Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria.". Hum. Mol. Genet. 12 (18): 2341–8. PMID 12915481. doi:10.1093/hmg/ddg238. 
  • Reuter TY, Medhurst AL, Waisfisz Q, et al. (2003). "Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport.". Exp. Cell Res. 289 (2): 211–21. PMID 14499622. doi:10.1016/S0014-4827(03)00261-1. 
  • Dubot A, Godinot C, Dumur V, et al. (2004). "GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene.". Biochem. Biophys. Res. Commun. 313 (3): 687–93. PMID 14697245. doi:10.1016/j.bbrc.2003.12.013. 
  • Coble MD, Just RS, O'Callaghan JE, et al. (2004). "Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians.". Int. J. Legal Med. 118 (3): 137–46. PMID 14760490. doi:10.1007/s00414-004-0427-6. 
  • Carrozzo R, Rizza T, Stringaro A, et al. (2004). "Maternally-inherited Leigh syndrome-related mutations bolster mitochondrial-mediated apoptosis.". J. Neurochem. 90 (2): 490–501. PMID 15228605. doi:10.1111/j.1471-4159.2004.02505.x. 

External links

  • GeneReviews/NCBI/NIH/UW entry on Mitochondrial DNA-Associated Leigh Syndrome and NARP
  • MT-ATP6 protein, human at the US National Library of Medicine Medical Subject Headings (MeSH)