Autophagy

Autophagy

(A) Diagram of autophagy; (B) Electron micrograph of autophagic structures in the fatbody of a fruit fly larva; (C) Fluorescently labeled autophagosomes in liver cells of starved mice.

Autophagy (or autophagocytosis) (from the Greek auto-, "self" and phagein, "to eat"), is the natural, destructive mechanism that disassembles, through a regulated process, unnecessary or dysfunctional cellular components.[1]

Autophagy allows the orderly degradation and recycling of cellular components.[1] During this process, targeted cytoplasmic constituents are isolated from the rest of the cell within a double-membraned vesicle known as an autophagosome. The autophagosome then fuses with a lysosome and the contents are degraded and recycled.[2] There are three different forms of autophagy that are commonly described, namely macroautophagy, microautophagy and chaperone-mediated autophagy.[3] In the context of disease, autophagy has been seen as an adaptive response to stress which promotes survival, whereas in other cases it appears to promote cell death and morbidity.[2] In the extreme case of starvation, the breakdown of cellular components promotes cellular survival by maintaining cellular energy levels.

The name "autophagy" was coined by Belgian biochemist Christian de Duve in 1963.[4]

Contents

  • Discovery and origin of the name 1
  • Process and pathways 2
  • Molecular biology 3
  • Functions 4
  • Autophagy and caloric restriction 5
  • Autophagy and exercise 6
  • Autophagy and osteoarthritis 7
  • Autophagy and cancer 8
    • Tumor suppressor 8.1
    • Tumor cell survival 8.2
    • Mechanism of cell death 8.3
    • Therapeutic target 8.4
  • See also 9
  • References 10
  • External links 11
  • Further reading 12
  • External links 13

Discovery and origin of the name

The process of autophagy was observed by [6] Inspired by this discovery, the term "autophagy" was invented by de Duve, the Nobel Prize-winning discoverer of lysosomes and peroxisomes. Unlike Porter and Ashford, de Duve conceived the term as a part of lysosomal function while describing the role of glucagon as a major inducer of cell degradation in the liver. With his postdoctoral student Russell L. Peter, he subsequently established that lysosomes are indeed responsible for glucagon-induced autophagy.[7][8] This was the first time the fact that lysosomes are the sites of intracellular autophagy was established. He first publicly used the word at the first international symposium on lysosomes, the Ciba Foundation Symposium on Lysosomes held in London during 12–14 February 1963. He specifically introduced it while making a speech on "The Lysosome Concept" to explain the term "cytolysomes" introduced by Alex B. Novikoff.[4][9][10]

Process and pathways

There are three pathways of autophagy and these are mediated by the autophagy-related genes and their associated enzymes.[11][12]

Macroautophagy is the main pathway, used primarily to eradicate damaged cell phagolysosomes.[32] Stimulation of autophagy in infected cells can help overcome this phenomenon, restoring pathogen degradation.

Autophagy and infection

Vesicular stomatitis virus is believed to be taken up by the autophagosome from the cytosol and translocated to the endosomes where detection takes place by a member of the PRRs called toll-like receptor 7, detecting single stranded RNA. Following activation of the toll-like receptor, intracellular signaling cascades are initiated, leading to induction of interferon and other antiviral cytokines. A subset of viruses and bacteria subvert the autophagic pathway to promote their own replication.[33] Galectin-8 has recently been identified as an intracellular "danger receptor", able to initiate autophagy against intracellular pathogens. When galectin-8 binds to a damaged vacuole, it recruits autophagy adaptor such as NDP52 leading to the formation of an autophagosome and bacterial degradation.[34]

Repair mechanism

Autophagy degrades damaged organelles, cell membranes and proteins, and the failure of autophagy is thought to be one of the main reasons for the accumulation of cell damage and aging.[35]

Programmed cell death

One of the mechanisms of programmed cell death (PCD) is associated with the appearance of autophagosomes and depends on autophagy proteins. This form of cell death most likely corresponds to a process that has been morphologically defined as autophagic PCD. One question that constantly arises, however, is whether autophagic activity in dying cells is the cause of death or is actually an attempt to prevent it. Morphological and histochemical studies so far did not prove a causative relationship between the autophagic process and cell death. In fact, there have recently been strong arguments that autophagic activity in dying cells might actually be a survival mechanism.[36][37] Studies of the metamorphosis of insects have shown cells undergoing a form of PCD that appears distinct from other forms; these have been proposed as examples of autophagic cell death.[38] Recent pharmacological and biochemical studies have proposed that survival and lethal autophagy can be distinguished by the type and degree of regulatory signaling during stress particularly after viral infection.[39] Although promising, these findings have not been examined in non-viral systems.

Autophagy and caloric restriction

Research suggests that autophagy is required for the lifespan-prolonging effects of caloric restriction. A 2010 French study of nematodes, mice and flies showed that inhibition of autophagy exposed cells to metabolic stress. Resveratrol and the dietary restriction prolonged the lifespan of normal, autophagy-proficient nematodes, but not of nematodes in which autophagy had been inhibited by knocking out Beclin 1 (a known autophagic modulator).[40]

Autophagy and exercise

Autophagy is essential for basal homeostasis; it is also extremely important in maintaining muscle homeostasis during physical exercise.[41][42] Autophagy at the molecular level is only partially understood. A study of mice shows that autophagy is important for the ever changing demands of their nutritional and energy needs, particularly through the metabolic pathways of protein catabolism. In a 2012 study conducted by the University of Texas Southwestern Medical Center in Dallas, mutant mice (with a knock-in mutation of BCL2 phosphorylation sites to produce progeny that showed normal levels of basal autophagy yet were deficient in stress-induced autophagy) were tested to challenge this theory. Results showed that when compared to a control group, these mice illustrated a decrease in endurance and an altered glucose metabolism during acute exercise.[41]

Another study demonstrated that collagen VI deficient muscle fibres was prevented and cellular homeostasis was maintained. Both studies demonstrate that autophagy induction may contribute to the beneficial metabolic effects of exercise and that it is essential in the maintaining of muscle homeostasis during exercise, particularly in collagen VI fibres.[41][42][43]

Work at the Institute for Cell Biology, University of Bonn, showed that a certain type of autophagy, i.e., chaperone-assisted selective autophagy (CASA), is induced in contracting muscles and is required for maintaining the muscle sarcomere under mechanical tension.[44] The CASA chaperone complex recognizes mechanically damaged cytoskeleton components and directs these components through a ubiquitin-dependent autophagic sorting pathway to lysosomes for disposal. This is necessary for maintaining muscle activity.[44][45]

Autophagy and osteoarthritis

Because autophagy decreases with age and age is a major risk factor for osteoarthritis, the role of autophagy in the development of this disease is suggested. Proteins involved in autophagy are reduced with age in both human and mouse articular cartilage.[46] Mechanical injury to cartilage explants in culture also reduced autophagy proteins.[47] Autophagy is constantly activated in normal cartilage but it is compromised with age and precedes cartilage cell death and structural damage.[48] These results suggest autophagy is a normal protective process (chondroprotection) in the joint.

Autophagy and cancer

Oftentimes, cancer occurs when several different pathways that regulate cell differentiation are disturbed. Autophagy plays an important role in cancer – both in protecting against cancer as well as potentially contributing to the growth of cancer.[36][49] Autophagy may protect against cancer by isolating damaged organelles, allowing cell differentiation, increasing protein catabolism, and even promoting cell death of cancerous cells.[50] However, autophagy can also contribute to cancer by promoting survival of tumor cells that have been starved, or that degrade apoptotic mediators through autophagy: in such cases, use of inhibitors of the late stages of autophagy (such as chloroquine), on the cells that use autophagy to survive, increases the number of cancer cells killed by antineoplastic drugs.[51]

The role of autophagy in cancer is one that has been highly researched and reviewed. There is evidence that emphasizes the role of autophagy both as a tumor suppressor as well as a factor in tumor cell survival. However, recent research has been able to show that autophagy is more likely to be used as a tumor suppressor according to several models.[49]

Tumor suppressor

In order to maintain homeostasis conditions, autophagy must not be disrupted. If this important mechanism is interrupted, tumor growth can likely occur. The main function of autophagy in tumor suppression is its ability to remove damaged proteins and organelles thus limiting any cell growth instability.[50] Several experiments have been done with mice and varying Beclin1, a protein that regulates autophagy. When the Beclin1 gene was altered to be heterozygous (Beclin 1+/-), the mice were found to be tumor prone.[52] However, when Beclin1 was overexpressed, tumor development was inhibited.[53]

Another study done on p62 further emphasizes autophagy’s role in tumor suppression. The increase of p62/SQSTM 1 protein groups due to lack of autophagy, damaged mitochondria, and defected misfolded proteins lead to reactive oxygen species (ROS) production.[50] ROS leads to damaged DNA and thus the formation of unwanted tumor cells.[50]

Necrosis and chronic inflammation also has been shown to be limited through autophagy which helps protect against the formation of tumor cells. Thus these experiments show autophagy’s role as a tumor suppressor.[54]

Tumor cell survival

Alternatively, autophagy has also been shown to play a huge role in tumor cell survival. In cancerous cells, autophagy is used as a way to deal with stress on the cell.[55] Once these autophagy related genes were inhibited, cell death was potentiated.[56] Tumor cells have high metabolic demands due to the increase in cell proliferation.[50] The increase in metabolic energy is offset by autophagy functions. These metabolic stresses include hypoxia, nutrient deprivation, and an increase in proliferation. These stresses activate autophagy in order to recycle ATP and maintain survival of the cancerous cells.[57] Autophagy has been shown to enable continued growth of tumor cells by maintaining cellular energy production. By inhibiting autophagy genes in these tumors cells, regression of the tumor and extended survival of the organs affected by the tumors were found. Furthermore, inhibition of autophagy has also been shown to enhance the effectiveness of anticancer therapies.[57]

Mechanism of cell death

Cells that undergo an extreme amount of stress experience cell death either through apoptosis or

  • , a journal produced by Landes Bioscience and edited by DJ KlionskyAutophagy
  • LongevityMeme entry describing PubMed article on the effects of autophagy and lifespan
  • Autophagolysosome on Drugs.com
  • , a Human Autophagy dedicated DatabaseHADb
  • , an autophagy database that covers all eukaryotesAutophagy DB
  • Self-Destructive Behavior in Cells May Hold Key to a Longer Life
  • Exercise as Housecleaning for the Body

External links

  • Liu, Y.; Bassham, D. C. (2012). "Autophagy: Pathways for Self-Eating in Plant Cells". Annual Review of Plant Biology 63: 215–237.  
  • Starokadomskyy P., Dmytruk K. "A bird’s-eye view of autophagy." Autophagy 9.7 (2013) 41-46.
  • Tavassoly Iman, Dynamics of Cell Fate Decision Mediated by the Interplay of Autophagy and Apoptosis in Cancer Cells: Mathematical Modeling and Experimental Observation, Springer, 2015.

Further reading

  • journal homepageAutophagy

External links

  1. ^ a b Kobayashi S (2015). "Choose Delicately and Reuse Adequately: The Newly Revealed Process of Autophagy". Biological & pharmaceutical bulletin 38 (8): 1098–103.  
  2. ^ a b Patel AS, Lin L, Geyer A; et al. (2012). Eickelberg, Oliver, ed. "Autophagy in idiopathic pulmonary fibrosis". PLoS ONE 7 (7): e41394.  
  3. ^ Peracchio C, Alabiso O, Valente G, Isidoro C; Alabiso; Valente; Isidoro (September 2012). "Involvement of autophagy in ovarian cancer: a working hypothesis". J Ovarian Res 5 (1): 22.  
  4. ^ a b Klionsky, DJ (2008). "Autophagy revisited: A conversation with Christian de Duve". Autophagy 4 (6): 740–3.  
  5. ^ Ashford, TP; Porter, KR (1962). "Cytoplasmic components in hepatic cell lysosomes". The Journal of Cell Biology 12 (1): 198–202.  
  6. ^ Hruban, Z; Spargo B; Swift H; Wissler RW; Kleinfeld RG (1963). "Focal cytoplasmic degradation". Am J Pathol 42 (6): 657–683.  
  7. ^ Deter, RL; Baudhuin, P; De Duve, C (1967). "Participation of lysosomes in cellular autophagy induced in rat liver by glucagon". The Journal of Cell Biology 35 (2): C11–6.  
  8. ^ Deter, RL; De Duve, C (1967). "Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes". The Journal of Cell Biology 33 (2): 437–49.  
  9. ^ De Duve, C (1983). "Lysosomes revisited". European journal of biochemistry / FEBS 137 (3): 391–7.  
  10. ^ William A. Dunn Jr., Laura A. Schroder, John P. Aris (2013). "Historical overview of autophagy". In Hong-Gang Wang. Autophagy and Cancer. Springer. pp. 3–4.  
  11. ^ a b Lee J, Giordano S, Zhang J; Giordano; Zhang (January 2012). "Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling". Biochem. J. 441 (2): 523–40.  
  12. ^ a b c d Mizushima N, Ohsumi Y, Yoshimori T; Ohsumi; Yoshimori (December 2002). "Autophagosome formation in mammalian cells". Cell Struct. Funct. 27 (6): 421–9.  
  13. ^ a b Levine B, Mizushima N, Virgin HW; Mizushima; Virgin (January 2011). "Autophagy in immunity and inflammation". Nature 469 (7330): 323–35.  
  14. ^ a b c Česen MH, Pegan K, Spes A, Turk B; Pegan; Spes; Turk (July 2012). "Lysosomal pathways to cell death and their therapeutic applications". Exp. Cell Res. 318 (11): 1245–51.  
  15. ^ a b Homma, K.S. (2011). "List of autophagy-related proteins and 3D structures". Autophagy Database 290. Archived from the original on 2012-08-01. Retrieved 2012-10-08 
  16. ^ "The Discovery of Lysosomes and Autophagy". 49 3: 49. 2010 
  17. ^ Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM (September 2008). "The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane". Mol. Cell. Biol. 28 (18): 5747–63.  
  18. ^ a b c Perry, A. (2010). Wiley & Sons Ltd, Chichester 115 (11): 0 
  19. ^ Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J; et al. (2009). "ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery". Mol Biol Cell 20 (7): 1992–2003.  
  20. ^ Mizushima N (2010). "The role of the Atg1/ULK1 complex in autophagy regulation". Curr Opin Cell Biol 22 (2): 132–9.  
  21. ^ a b Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008). "Regulation of macroautophagy by mTOR and Beclin 1 complexes". Biochimie 90 (2): 313–23.  
  22. ^ Russell, RC; Tian, Y; Yuan, H; Park, HW; Chang, YY; Kim, J; Kim, H; Neufeld, TP; et al. (Jul 2013). "ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase". Nat Cell Biol. 15 (7): 741–50.  
  23. ^ Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y, Inagaki F (2007). "Structure of Atg5.Atg16, a complex essential for autophagy". J Biol Chem 282 (9): 6763–72.  
  24. ^ Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL; et al. (2009). "Stimulation of autophagy by the p53 target gene Sestrin2". Cell Cycle 8 (10): 1571–6.  
  25. ^ Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M; et al. (2008). "Regulation of autophagy by cytoplasmic p53". Nat Cell Biol 10 (6): 676–87.  
  26. ^ Reggiori F, Klionsky DJ (February 2002). "Autophagy in the eukaryotic cell". Eukaryotic Cell 1 (1): 11–21.  
  27. ^ Klionsky, Daniel J.; Emr, Scott D. (2000). "Autophagy as a regulated pathway of cellular degradation" 290 (5497). pp. 1717–1721.  
  28. ^ Levine B, Klionsky DJ; Klionsky (April 2004). "Development by self-digestion: molecular mechanisms and biological functions of autophagy". Dev. Cell 6 (4): 463–77.  
  29. ^ Kuma A, Hatano M, Matsui M; et al. (December 2004). "The role of autophagy during the early neonatal starvation period". Nature 432 (7020): 1032–6.  
  30. ^ a b Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y; Yamamoto; Matsui; Yoshimori; Ohsumi (March 2004). "In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker". Mol. Biol. Cell 15 (3): 1101–11.  
  31. ^ a b Tsukada M, Ohsumi Y; Ohsumi (October 1993). "Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae". FEBS Lett. 333 (1–2): 169–74.  
  32. ^ Deretic V, Delgado M, Vergne I; et al. (2009). "Autophagy in immunity against mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy". Curr. Top. Microbiol. Immunol. Current Topics in Microbiology and Immunology 335: 169–88.  
  33. ^ Jackson WT, Giddings TH, Taylor MP; et al. (May 2005). "Subversion of cellular autophagosomal machinery by RNA viruses". PLoS Biol. 3 (5): e156.  
  34. ^ Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F; Wandel; von Muhlinen; Foeglein; Randow (February 2012). "Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion". Nature 482 (7385): 414–8.  
  35. ^ Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A; Bergamini; Brunk; Dröge; Ffrench; Terman (2005). "Autophagy and aging: the importance of maintaining "clean" cells". Autophagy 1 (3): 131–40.  
  36. ^ a b c Tavassoly, Iman (2015). Dynamics of Cell Fate Decision Mediated by the Interplay of Autophagy and Apoptosis in Cancer Cells. Springer International Publishing.  
  37. ^ Tsujimoto Y, Shimizu S; Shimizu (November 2005). "Another way to die: autophagic programmed cell death". Cell Death Differ. 12 (Suppl 2): 1528–34.  
  38. ^ Schwartz LM, Smith SW, Jones ME, Osborne BA; Smith; Jones; Osborne (February 1993). "Do all programmed cell deaths occur via apoptosis?". Proc. Natl. Acad. Sci. U.S.A. 90 (3): 980–4.  
  39. ^ Datan E, Shirazian A, Benjamin S, Matassov D, Tinari A, Malorni W, Lockshin RA, Garcia-Sastre A, Zakeri Z; Shirazian; Benjamin; Matassov; Tinari; Malorni; Lockshin; Garcia-Sastre; Zakeri (2014). "mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza A infection". Virology. 452-453 (March 2014): 175–190.  
  40. ^ Morselli E, Maiuri MC, Markaki M; et al. (2010). "Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy". Cell Death Dis 1 (1): e10–.  
  41. ^ a b c He C, Bassik MC, Moresi V; et al. (January 2012). "Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis". Nature 481 (7382): 511–5.  
  42. ^ a b Nair U, Klionsky DJ; Klionsky (December 2011). "Activation of autophagy is required for muscle homeostasis during physical exercise". Autophagy 7 (12): 1405–6.  
  43. ^ a b Grumati P, Coletto L, Schiavinato A; et al. (December 2011). "Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles". Autophagy 7 (12): 1415–23.  
  44. ^ a b Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Höhfeld J; Dick; Tawo; Dreiseidler; Wenzel; Hesse; Fürst; Saftig; Saint; Fleischmann; Hoch; Höhfeld (January 2010). "Chaperone-assisted selective autophagy is essential for muscle maintenance". Curr Biol 20 (2): 143–8.  
  45. ^ Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P, Behrends C, Fürst DO, Volkmer R, Hoffmann B, Kolanus W, Höhfeld J.; Eppler; Tapia; Van Der Ven; Hampe; Hersch; Vakeel; Stadel; Haas; Saftig; Behrends; Fürst; Volkmer; Hoffmann; Kolanus; Höhfeld (February 2013). "Cellular Mechanotransduction Relies on Tension-Induced and Chaperone-Assisted Autophagy". Curr Biol 23 (5): 430–5.  
  46. ^ Carames, B; Taniguchi, N; Otsuki, S; Blanco, FJ; Lotz, M (2010). "Autophagy is a protective mechanism in normal cartilage, and its aging related loss is linked with cell death and osteoarthritis". Arthritis Rheum 62 (3): 791–801.  
  47. ^ Carames, B; Taniguchi, N; Seino, D; Blanco, FJ; D’Lima, D; Lotz, M (2012). "Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection". Arthritis Rheum 64 (4): 1182–1192.  
  48. ^ Carames, B; Olmer, M; Kiosses, WB; Lotz, MK (2015). "The relationship of autophagy defects to Cartilage Damage During joint aging in a mouse model". Arthritis Rheumatol 67 (6): 1568–1576.  
  49. ^ a b Furuya, N., Liang, X.H., and Levin, B. 2004. Autophagy and cancer. In Autophagy. D.J. Klionsky editor. Landes Bioscience. Georgetown, Texas, USA. 244-253.
  50. ^ a b c d e Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY; et al. (2009). "Autophagy suppresses tumorigenesis through elimination of p62". Cell 137 (6): 1062–75.  
  51. ^ Vlahopoulos S, Critselis E, Voutsas IF, Perez SA, Moschovi M, Baxevanis CN, Chrousos GP (2014). "New use for old drugs? Prospective targets of chloroquines in cancer therapy". Curr Drug Targets. 15 (9): 843–51.  
  52. ^ Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A; et al. (2003). "Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene". J Clin Invest 112 (12): 1809–20.  
  53. ^ Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H; et al. (1999). "Induction of autophagy and inhibition of tumorigenesis by beclin 1". Nature 402 (6762): 672–6.  
  54. ^ Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT; et al. (2008). "The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis". Cancer Cell 13 (4): 343–54.  
  55. ^ a b c Paglin, S; Hollister, T; Delohery, T; Hackett, N; McMahill, M; Sphicas, E; Domingo, D; Yahalom, J (2001). "A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles". Cancer Res 61: 439–44. 
  56. ^ a b c Jin, S; White, E (2007). "Role of autophagy in cancer: management of metabolic stress". Autophagy 3: 28–31.  
  57. ^ a b c Yang, ZJ; Chee, CE; Huang, S; Sinicrope, FA (2011). "The role of autophagy in cancer: therapeutic implications". Mol Cancer Ther. 10: 1533–1541.  

References

See also

The second strategy is based on the idea that autophagy is a protein degradation system used to maintain homeostasis and the findings that inhibition of autophagy often leads to apoptosis. Inhibition of autophagy is riskier as it may lead to cell survival instead of the desired cell death.[55]

The first strategy has been tested by looking at dose-response anti-tumor effects during autophagy-induced therapies. These therapies have shown that autophagy increases in a dose-dependent manner. This is directly related to the growth of cancer cells in a dose-dependent manner as well.[55] This data supports the development of therapies that will encourage autophagy. Secondly, inhibiting the protein pathways directly known to induce autophagy may also serve as an anticancer therapy.[56]

New developments in research have found that targeted autophagy may be a viable therapeutic solution in fighting cancer. As discussed above, autophagy plays both a role in tumor suppression and tumor cell survival. Thus, the qualities of autophagy can be used as a strategy for cancer prevention. The first strategy is to induce autophagy and enhance its tumor suppression attributes. The second strategy is to inhibit autophagy and thus induce apoptosis.[56]

Therapeutic target

[36] This technique can be utilized as a therapeutic cancer treatment.[57] Cellular autophagic machinery also play an important role in innate immunity. Intracellular pathogens, such as

Xenophagy (autophagic degradation of infectious particles)

Autophagy has roles in various cellular functions. One particular example is in yeasts, where the nutrient starvation induces a high level of autophagy. This allows unneeded proteins to be degraded and the amino acids recycled for the synthesis of proteins that are essential for survival.[26][27][28] In higher eukaryotes, autophagy is induced in response to the nutrient depletion that occurs in animals at birth after severing of the trans-placental food supply, as well as that of nutrient starved cultured cells and tissues.[29][30] Mutant yeast cells that have a reduced autophagic capability rapidly perish in nutrition-deficient conditions.[31] Studies on the apg mutants suggest that autophagy via autophagic bodies is indispensable for protein degradation in the vacuoles under starvation conditions, and that at least 15 APG genes are involved in autophagy in yeast.[31] A gene known as ATG7 has been implicated in nutrient-mediated autophagy, as mice studies have shown that starvation-induced autophagy was impaired in atg7-deficient mice.[30]

Nutrient starvation

Functions

Depending on the location of the p53 tumor suppressor protein, it plays a different role in regulating autophagy as well. When in the nuclear region, p53 acts as a transcription factor in order to activate DRAM1 and Sestrin-2 which activates autophagy.[24] In the cytoplasm, p53 inhibits autophagy. Thus, to induce autophagy, p53 is degraded through proteasomes.[25]

Autophagy is initiated by the ULK1 kinase complex which consists of ULK1, ATG13, ATG17 and receives stress signals from mTOR complex 1. When mTORC1 kinase activity is inhibited, autophagosome formation occurs.[19][20] This involves Vps34 which forms a complex with Beclin 1 after interacting with AMBRA1, Bif-1, and Bcl-2, which modulate its binding properties. Binding to Vps34 is essential because of its lipid kinase activity.[21] Current research suggests that ULK1 phosphorylation of Beclin-1 initiates activity of the ATG14L-containing VPS34 complex, promoting autophagy induction.[22] Autophagosome formation also requires Atg12 and LC3, protein conjugation systems that resemble ubiquitin. The LC3 system is important for transport and maturation of the autophagosome.[23] Once an autophagosome has matured, it fuses its external membrane with lysosomes to degrade its cargo.[21]

Molecular biology

Chaperone-mediated autophagy, or CMA, is a very complex and specific pathway, which involves the recognition by the hsc70-containing complex.[14][17] This means that a protein must contain the recognition site for this hsc70 complex which will allow it to bind to this chaperone, forming the CMA- substrate/chaperone complex.[15] This complex then moves to the lysosomal membrane-bound protein that will recognise and bind with the CMA receptor, allowing it to enter the cell.[18] Upon recognition, the substrate protein gets unfolded and it is translocated across the lysosome membrane with the assistance of the lysosomal hsc70 chaperone.[11][12][18] CMA is significantly different from other types of autophagy because it translocates protein material in a one by one manner, and it is extremely selective about what material crosses the lysosomal barrier.[13][18]

Microautophagy, on the other hand, involves the direct engulfment of cytoplasmic material into the lysosome.[16] This occurs by invagination, meaning the inward folding of the lysosomal membrane, or cellular protrusion.[14]

[15] Within the lysosome, the contents of the autophagosome are degraded via acidic lysosomal hydrolases.[12]